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Anotace 

Ve své práci jsem se zabýval neuronovými sítěmi a jejich matematickým principům. Cílem mé 

práce bylo vysvětlit fungování neuronových sítí a zároveň vytvořit model, jehož funkčnost bych 

ukázal na konkrétním příkladu. K vytvoření takového modelu jsem použil programovací jazyk 

Python, který je pro tuto práci z mnoha důvodů výhodnou volbou. V programu byla použita 

knihovna zvaná „Numpy“, která výrazně ulehčila práci s maticemi a vektory.  
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Neuron; Neuronová síť; Perceptron; Přenosová funkce; Učící pravidlo; Učící parametr; Učení 

s učitelem;  

Annotation 

In my work, I dealt with neural networks and their mathematical functioning. The goal of my 

work was to explain the functioning of neural networks and create a functional model, which 

functionality I would show on an example. To create such a model, I used the Python 

programming language, which is a convenient option for this work, for many reasons. A library 

called "Numpy" was used in the program, which greatly facilitated the work with matrices and 

vectors. 
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1 ÚVOD 

V této práci jsem se zaměřil na umělé neuronové sítě. A o co se vlastně jedná? Umělé neuronové 

sítě jsou matematickým modelem biologických neuronových sítí využívaných naším mozkem. 

Teď ve zkratce víme, o co se jedná, ale k čemu vůbec slouží? Umělé neuronové sítě nám dávají 

možnost řešit i nelineární problémy, které by klasický program nevyřešil. To znamená, že 

kdybychom si v případě nelineárního problému vstupní vzorky vyjádřili v grafu, zjistili 

bychom, že by je nebylo možné rozdělit pomocí přímky. Kdybychom se podívali na náš svět, 

zjistíme že málokterý problém je lineární. To že by ho klasický program nedokázal vyřešit není 

úplně přesné, bylo by to ale velice náročné, protože bychom všechny souvislosti, které se 

neuronová síť naučí sama, museli ručně vypsat. A to je ta průlomová myšlenka. Není tedy lepší, 

abychom program naučili fungovat, aniž bychom museli vlastnosti ručně vypisovat? 

A právě tato myšlenka, vytvořit umělé vědomí, provází lidstvo již velice dlouho. Výsledkem 

tohoto hledání jsou, již výše zmíněné, umělé neuronové sítě, které jsou podstatou defacto každé 

umělé inteligence dnešní doby. Na rozdíl od lidského mozku, který má kolem sto miliard 

neuronů, dokážeme zatím vytvořit sítě s miliony neuronů. Proto bych řekl, že k vytvoření 

skutečného funkčního vědomí nás čeká ještě velmi dlouhá cesta. To ale v žádném případě 

neznamená, že nám jsou umělé neuronové sítě k ničemu, ba naopak. Dnes zažívají obrovský 

rozmach a jsou hojně využívány. Například u autonomního řízení vozidel, jako třeba prototypy 

firmy Tesla, nebo u autopilota v letadlech. Používají se také u programů pro rozpoznávání 

obličej, jako třeba takzvané „FaceID“ značky Apple, nebo „Windows Hello“ značky Microsoft. 

Hlavní předností neuronových sítí je jejich univerzální využití, ať už v těžkém průmyslu, nebo 

třeba v medicíně a v mnohých dalších oborech. Zkrátka, jejich možnosti jsou obrovské a dají 

se implementovat téměř všude. A to je také důvod, proč je aktuálně umělá inteligence tak 

populární.  

 Mým hlavním cílem bylo osvětlit toto téma i těm, co nedisponují odbornými znalostmi 

v oboru. Musím také dodat, že ač se jedná o stále diskutovanější téma, je opravdu těžké najít 

relevantní zdroje v českém jazyce, které by ale zároveň byly pochopitelné také pro člověka bez 

odborných znalostí. Myslím si, že pochopit neuronové sítě je pro nás velice důležité a čím více 

lidí se tomuto tématu bude věnovat, tím bude, dle mého názoru, rychlejší pokrok. 



   

 

   

 

Zároveň bych řekl, že je to velikým lákadlem, zvlášť pro mladou generaci, protože nedostatek 

odborníků a zároveň zvyšující se poptávka je dobrou příležitostí naskočit do tohoto oboru. 

Z mého pohledu bude umělá inteligence ve světě hrát čím dál tím větší roli. Musím však dodat, 

že bez základních znalostí matematiky se u čtení této práce neobejdete. Přečtení této práce 

doporučuji každému nadšenci do umělé inteligence, který by chtěl také zlehka porozuměti 

jejímu fungování. 

 



   

 

   

 

2 ÚVOD DO NEURONOVÝCH SÍTÍ 

V této kapitole si nejprve vysvětlíme, co to umělé neuronové sítě jsou a jak jsou inspirovány 

fungováním lidského mozku. Poté se podíváme, kde a jak se tyto sítě v dnešní době využívají. 

A nakonec zlehka zavítáme také do historie a představíme si například první funkční model 

umělého neuronu. 

2.1 Definice 

Umělá neuronová síť je systém, který zpracovává informace, skládající se z množství jednotek 

(neuronů), které si na základě daného propojení posílají informace ve formě aktivace, či naopak 

„deaktivace“ jednotlivých neuronů. Do jisté míry jsou tato propojení odrazem struktury 

biologického mozku. Aby se neuronové sítě mohly učit, potřebují učící algoritmy, kterých 

existuje velké množství. Velkou výhodou je univerzálnost využití. Takovéto sítě umožňují řešit 

problémy v různých oblastech statistiky, technologie nebo ekonomie. Protože neuronovou síť 

aplikujeme na konkrétní problém, nedokáže se, na rozdíl od našeho mozku, zaměřit i na řešení 

dalších problémů (Ebert, 2019 str. 6). 

2.2 Využití 

Ač se to na první pohled nezdá, setkáváme se s nimi téměř denně a to například, když hledáme 

obrázky pomocí internetového prohlížeče Google.  

Možné využití neuronových sítí stále roste, a to hlavně díky neustále zvyšujícímu se výkonu 

počítačů, díky kterému se potřebná doba pro trénování těchto sítí značně zkracuje. Dalším 

důvodem je také fakt, že se databáze vzorků zvětšují a větší množství vzorků má za následek 

zvýšení přesnosti sítě. 

Je neuvěřitelné, ale zároveň také děsivé, co všechno se za pár let dokázaly naučit. Umělé 

neuronové sítě najednou umí i to, co dříve zvládl jen člověk jako například skládat písně, hrát 

šachy nebo i psát básně. Relativně nový program zvaný „GPT-3“ od neziskové společnosti 

OpenAI dokáže dokonce psát programy vlastní, nebo vést konverzaci.  



   

 

   

 

Musím přiznat, že ani já jsem zprvu nedokázal rozeznat báseň vytvořenou programem a báseň 

vytvořenou člověkem. Až po důkladném pročtení bylo znát, že ta báseň napsaná programem 

postrádala hlubší význam.  

Neuronové sítě využívá také velké množství aplikací i her, jako například známá funkce 

„Windows Hello“, která díky uložení snímku Vašeho obličeje dokáže později při přihlášení 

určit, zda se jedná o Vás, či nikoliv. Nespornou výhodou je přípustná odchylka. To znamená, 

že se nemusí jednat o 100% totožný snímek, ale stačí dostatek společných vlastností. 

Umělé neuronové sítě však dokážou zachránit i život. V medicínské sféře se testují programy 

pro poznávání zhoubných nádorů podle obrázků. Na základě mnoha testů lze tvrdit, že mají 

lepší výsledky než člověk. Velkou výhodou je také fakt, že diagnózu provede program takřka 

okamžitě a bez potřeby experta v oboru. A právě včasná diagnóza může pacientům mnohdy 

zachránit život. 

2.3 Historie neuronových sítí 

Historie neuronových sítí sahá od roku 1943 až do současnosti. Přelomovými objevy byly 

Perceptron na konci 50. let a algoritmus zpětného šíření chyby (angl. Back-Propagation), v 

polovině 70. let. Mezi tím byla takzvaná zima, ve které byla zpochybněna užitečnost a 

proveditelnost neuronových sítí. Hlavní překážkou byl v té době nedostatek výkonného 

hardwaru. Lidský mozek je studován již několik tisíc let. První krok k umělým neuronovým 

sítím byl však učiněn až v roce 1943, kdy neurofyziolog Warren McCulloch a mladý matematik 

Walter Pitts napsali článek o tom, jak neurony vůbec fungují. Vytvořili pomocí elektrických 

obvodů jednoduchý neuron, který měl více vstupních signálů a pouze jeden výstup.  

V roce 1949 opět otevřel koncept neuronů Donald Hebb, když ve své knize „The Organization 

of Behaviour“ poukázal na to, že „pokud biologický neuron aktivuje jiný neuron, tak spojení 

mezi nimi zesílí. To znamená, že váha mezi dvěma neurony se zvětší pokaždé, když mají stejný 

výstup. Pokud se dva neurony aktivují ve stejný čas, je posíleno jejich spojení“ (Farkaš, 2019 

str. 3). S přibývajícím výkonem tehdejšího hardwaru bylo nakonec v roce 1950 možné 

nasimulovat hypotetickou neuronovou síť. Poprvé se o to pokusil vědec z IBM Nathanial 

Rochester. Bohužel však jeho pokus skončil neúspěchem. 



   

 

   

 

V roce 1957 vynalezl Frank Rosenblatt Perceptron. Jednalo se v podstatě o McCullochův a 

Pittsův model, ale s přidaným algoritmem učení, který již dokázal rozdělit lineárně 

separovatelná data. Již v roce 1958 Frank Rosenblatt využil svůj algoritmus Perceptronu pro 

vývoj prvního neuropočítače „Mark I Perceptron“ v laboratoři „Cornell Aeronautical 

Laboratory“. Za pomocí senzoru o velikosti, 20krát 20 pixelů dokázal rozpoznat jednoduché 

číslice (Ebert, 2019 str. 9). V roce 1960 Bernhard Vitro a Marcia Hoff, ze Stanfordské 

Univerzity, vyvinuli modely, které nazvali "Adeline" a "Madaline". Adeline byl vyvinut tak, 

aby rozpoznal binární obrazce, takže pokud četl bity z telefonní linky, mohl předpovědět další 

bity. Madaline byla první neuronová síť aplikovaná na problém reálného světa za pomoci 

adaptivního filtru, který eliminuje ozvěny na telefonních linkách. Přestože je tento systém 

velice starý, je stále komerčně využíván (Volná, 2002). Tento model využíval učící pravidlo 

Delta, které si popíšeme později (Ebert, 2019 str. 9). 

 „V roce 1969 Marvin Minsky a Seymour Papert ve své knize Perceptrons ukázali několik 

vážných nedostatků Perceptronu. Nejdůležitější poznatek byl, že Perceptrony nejsou schopny 

řešit triviální nelineární problém typu XOR (Exkluzivní disjunkce). Tento poznatek vedl k 

velkému poklesu zájmu o umělé neuronové sítě většiny vědců“ (Farkaš, 2019 str. 4). 

V 80. letech přichází Kunihiko s konvolučními neuronovými sítěmi obsahující více 

neuronových vrstev a svým modelem nazvaným „Neocognitron“ (Ebert, 2019 str. 9).  

Na začátku 90. let nastává velký rozmach, a například i známá americká agentura DARPA 

začala aktivně podporovat výzkum neuronových sítí, zanedlouho následovaly i jiné organizace 

(Volná, 2002). V roce 1986 přichází algoritmus zpětného šíření chyby, též Back-Propagation 

pro vícevrstvé neuronové sítě (Volná, 2002). Problém Perceptronu, který nedokázal vyřešit 

nelineární problémy, se však podařilo vyřešit roku 1989, kdy tým New Yorské univerzity již 

známý algoritmus Back-Propagation aplikoval na konvoluční sítě. Model této neuronové sítě 

pojmenovaný „LeNet“ byl poté úspěšně otestován na datech tvořící ručně psané číslice. Tento 

model byl od roku 1990 ve Spojených státech využívána pro automatické rozpoznání 

poštovního směrovacího čísla. V roce 2011 byl algoritmus tohoto modelu upraven tak, aby 

mohl fungovat za pomoci grafické karty, což několikanásobně zrychlilo proces trénování a 

otevřely se možnosti s daleko větším množstvím trénovacích dat.  



   

 

   

 

Umělé neuronové sítě fungující právě na tomto principu, byly také první, které dokázaly předčít 

člověka v rozpoznání obrazců (Ebert, 2019 str. 10). 

Tím to však nekončí. Také dnes přicházejí vědci stále s různými modifikacemi těchto 

základních algoritmů, které dosahují čím dál lepších výsledků. Dalšímu výzkumu nahrává také 

fakt, že je dnes umělá inteligence využívána téměř všude a možné využití stále roste. Další 

nespornou výhodou je také prudce stoupající výkon dnešních počítačů, čímž se otvírají dveře 

komplexnějším neuronovým sítím s větším množstvím trénovacích dat.  



   

 

   

 

3 PŘENOSOVÁ FUNKCE 

V této kapitole se podíváme již na konkrétní funkci, která je podstatná pro fungování neuronové 

sítě tím, že se na základě ní mění hodnota výstupu jednotlivých neuronů sítě. Vysvětlíme si, 

proč je přenosová funkce potřeba a jak vlastně funguje. Také si podrobně představíme ty 

nejznámější a dnes nejpoužívanější. Ukážeme si jejich výhody a nevýhody a rozdíl mezi 

použitím funkce lineární či nelineární.  

3.1 Definice 

Přenosová, nebo také aktivační funkce neuronu, definuje jeho výstup na základě sady vstupů. 

Nejprve se tedy provede součet vstupů vynásobených váhami, neboli vážený součet. Funkce 

pak provede určitý typ operace, která závisí na námi vybrané přenosové funkci, aby 

transformovala součet na číslo mezi libovolnou dolní hranicí a libovolnou horní hranicí. 

Přenosová funkce je vlastně inspirována aktivitou v našem mozku, ve kterém jsou neurony 

aktivovány různými podněty. Vysvětleme si to na následujícím příkladu. Pokud ucítíte něco 

příjemného, tak určité neurony v mozku na základě podnětů vyšlou signál, čímž se aktivují, jiné 

naopak signál nevyšlou a zůstanou v inaktivním stavu. To může být také reprezentováno 

binárně, což znamená nulou pro neaktivaci a jedničkou pro aktivaci neuronu (Borzymowski, 

2019 str. 22). Ale jsou tyto funkce vůbec potřeba a nešlo by to i bez nich? 

Odpověď na tuto otázku není úplně jednoznačná. Mohu mít neuron bez přenosové funkce. 

Takový neuron by tedy využil lineární funkci f(x) = x. Problém však je ten, že by takový model 

mohl řešit jen čistě lineární problémy, pro které by ale taková neuronová síť nebyla vůbec 

potřeba a rychleji by se vyřešily klasickou formou. Zajímavější to však bude v případě řešení 

nelineárního problému jako třeba u klasifikace či regrese. Představme si následující problém. 

Potřebujeme od sebe rozlišit následující vzorky: obrázky lidí a obrázky zvířat. Kdybychom si 

vzorky zvířat i lidí definovali jako body grafu, zjistili bychom, že by se pomocí nějaké 

nelineární funkce dali rozdělit do dvou tříd, a to je přesně to, o co nám jde. Pokud bychom ale 

přenosovou funkci nepoužili, museli bychom vzorky rozdělit pomocí přímky, což by v našem 

případě nebylo možné.  



   

 

   

 

3.2 Nejpoužívanější přenosové funkce 

3.2.1 Skoková funkce 

 

Obrázek 1: Graf skokové funkce 

Toto je vůbec nejstarší přenosová funkce, která byla využívána již McCullochovím modelem 

neuronu. Jedná se o jednoduchou binární funkci. To znamená, že výstup je buď hodnota nula, 

nebo jedna. Tedy pokud je vstupní hodnota záporné číslo, bude výstup této funkce číslo nula, 

kdežto když bude vstupní hodnota kladná nebo nula, bude výstup funkce číslo jedna.  

Velký problém této přenosové funkce však nastává při klasifikaci vstupů, kde se zjišťuje, jaké 

třídě vzorek náleží na základě libovolných společných rysů. Funkce by tedy mohla hodnotu 

jedna přiřadit pouze jedné třídě a zbytek tříd by musel mít hodnotu nula. Při takové klasifikaci 

je však vysoká pravděpodobnost, že se aktivuje více neuronů, což by znamenalo, že by 

neuronová síť musela vzorek přiřadit více třídám současně. A to je také důvod proč se tato 

přenosová funkce již moc nevyužívá (Borzymowski, 2019 str. 22). 



   

 

   

 

3.2.2 Sigmoidní funkce 

 

Obrázek 2: Graf sigmoidní funkce 

𝑓𝑓(𝑥𝑥)  =  
1

1 +  𝑒𝑒− 𝑥𝑥 

Podívejme se teď na přenosovou funkci zvanou „Sigmoid“. Jedná se o standartní logistickou 

křivku. Funkce přijímá vstup a pokud má vstup velmi negativní hodnotu, bude výstup této 

funkce číslo velmi blízké nule. Naopak pokud je hodnota vstupu velmi kladná, bude výstup 

funkce číslo blízké jedné. Funkce sigmoid má tedy dolní hranici hodnotu nula a horní hranici 

hodnotu jedna. Jeden z problémů této přenosové funkce je však ten, že čím vyšší mají vstupy 

absolutní hodnoty, tím více se stávají nerozlišitelné, neboli rozdíl mezi nimi se stává velmi 

malým. Kdyby tento problém nastal, znamenalo by to, že by se síť i po dlouhé době trénování 

prakticky nic nenaučila (Ebert, 2019 str. 15). 

 



   

 

   

 

3.2.3 ReLU funkce 

 

Obrázek 3: Graf funkce ReLU 

𝑓𝑓(𝑥𝑥) = �0, 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0 

Tato přenosová funkce (angl. Rectified Linear Unit) je jedna z nejpoužívanějších 

v klasifikačních problémech dnešní doby, a to hlavně díky jejímu nenáročnému výpočtu ale i 

přesto dobrým vlastnostem. Když se podíváme na graf výše, zjistíme, že se jedná o poměrně 

jednoduchou funkci. Vidíme, že pokud je hodnota vstupu menší než nula, je výstup přenosové 

funkce nula, avšak pokud je vstup větší nebo roven nule, svoji hodnotu si zachová a výstup 

funkce bude stejný jako její vstup neboli f (x) = x. Jedna z nevýhod je, že ve funkci není rozdíl 

mezi záporným číslem a nulou, což může vést k problémům. A proto existuje více modifikací 

této funkce jako například takzvaný „Leaky ReLU“ kde je f(x) v záporných hodnotách rovna 

p*x (p je parametr za který dosadíme číslo v závislosti na chtěném sklonu funkce). Protože si 

zde ale představujeme jen základní přenosové funkce, nebudeme se této modifikaci dále 

věnovat. Je však dobré vědět že existuje. 



   

 

   

 

Narozdíl od sigmoidní funkce, která má jako výstup vždy nějakou hodnotu mezi nulou a 

jedničkou, narážíme u přenosové funkce „ReLU“ na problém, že se kvůli možnému nulovému 

výstupu můžou některé neurony stát neaktivními, a to i po celou dobu trénovacího procesu, 

čímž je značně narušena efektivita celé neuronové sítě. Toto můžeme ale vidět i jako výhodu, 

protože tím, že se neurony stanou neaktivními, se značně zjednoduší výpočet, a tudíž se zkrátí 

i potřebná doba pro trénování sítě (Ebert, 2019 str. 17). 

3.2.4 Hyperbolický tangens 

 

Obrázek 4: Graf funkce hyperbolický tangens 

𝑓𝑓(𝑥𝑥)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥)  =  
(𝑒𝑒𝑥𝑥  − 𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥  +  𝑒𝑒+𝑥𝑥)

 

Funkce hyperbolický tangens je také hojně využívána a je často upřednostňována před 

sigmoidní přenosovou funkcí. A to proto, že oproti sigmoidní funkci nabývá hyperbolický 

tangens hodnot mezi 1 a  –1, čímž se neztrácí hodnota záporného čísla a také je výsledná 

hodnota blíže nule, což je lepší pro učící algoritmus. 



   

 

   

 

Nevýhodu má ale stejnou, čím jsou vstupní čísla v absolutní hodnotě větší, tím je rozdíl mezi 

nimi menší. Neboli, pokud jsou vstupní čísla příliš vysoká stane se rozdíl mezi nimi 

zanedbatelný, a to může mít za následek, že by je neuronová síť nedokázala rozlišit (Ebert, 2019 

str. 16). Jediný případ, kdy je dávána přednost sigmoidní funkci je u výstupní vrstvy klasifikační 

neuronové sítě, u které potřebujeme zjistit, jak moc si je síť jistá, že se jedná o danou třídu. 

Výstup tedy bude číslo mezi nulou a jedničkou, a to poté můžeme i snáze vyjádřit procentuálně. 



   

 

   

 

4 JEDNOVRSTVÁ NEURONOVÁ SÍŤ (PERCEPTRTON) 

V této kapitole si ukážeme základní jednovrstvou neuronovou síť zvanou „Perceptron“ a 

podrobně se podíváme na její stavbu. Na základě nabytých vědomostí z předchozích kapitol si 

na příkladu vysvětlíme fungování jednoduchého učícího pravidla. Spolu s těmito vědomostmi 

si ukážeme fungování Perceptronu na dvou příkladech s již reálnými problémy. Také si 

řekneme, proč druhý příklad nelze jednovrstvou neuronovou sítí vyřešit a tím si zároveň 

odpovíme na otázku proč vůbec vznikly i sítě vícevrstvé. 

4.1 Definice 

Abychom mohli začít vytvářet vlastní neuronovou síť, musíme si nejdříve představit neuron a 

neuronovou síť, která obsahuje pouze jediný neuron. Ta nejjednodušší se nazývá Perceptron. 

Perceptron je nejjednodušším matematickým modelem neuronové sítě, inspirovaným 

skutečným fungováním neuronů v živém organismu. 

Jednoduše řečeno, funguje takový Perceptron tak, že má x vstupů a jeden výstup. Vstupy se 

vynásobí zpočátku náhodně vygenerovanými váhami a suma těchto čísel plus práh (viz níže) je 

poté porovnána s požadovaným výsledkem. Tím dostaneme takzvanou chybu neuronové sítě, 

pomocí které se později budou optimalizovat váhy tak, aby byla ve výsledku chyba co nejmenší 

(Farkaš, 2019 str. 2). To tedy znamená, že se jedná o „Supervised learning“ neboli učení 

s učitelem, kdy jsou sítí předloženy vstupní ale i výstupní trénovací vzorky. 

4.2  Stavba Perceptronu 

4.2.1 Vstupy 

Vstupy Perceptronu jsou podněty z vnějšího prostředí, charakterizovány libovolným reálným 

číslem. V našem případě se jedná o vektor hodnot X, který obsahuje různé informace o 

zkoumané věci. Vstupy mohou být například i číselně vyjádřené obrázky a právě na tomto 

principu funguje jakékoliv rozpoznání obličeje, zvířete nebo jiné věci. Vstup je vždy vyjádřen 

libovolnou číselnou řadou. 



   

 

   

 

4.2.2 Váhy  

Váhy jsou zpočátku náhodně vygenerovaná čísla, který mi se poté násobí vstupy. Hodnoty vah 

i prahů jsou právě to, kde se projeví učící proces. Jejich hodnota se mění na základě vypočítané 

chyby sítě. Na obrázku jsou váhy definované jako ohodnocení hran. 

4.2.3  Výstupy 

Výstupy jsou výsledky neuronové sítě, které se počítají sumou vstupů vynásobených váhami. 

Díky výstupu sítě můžeme vypočítat takzvanou chybu sítě, a to tak, že od požadovaného 

výsledku odečtu skutečný výstup sítě. Na základě této chyby je možné pomocí dopředného 

algoritmu postupně měnit hodnotu jednotlivých vah (Pircher, 2017 str. 15). 

4.2.4 Prahy 

Práh, nebo také často nazývaný „Bias“ je hodnota nacházející se uvnitř samotného neuronu, 

která se stará o posunutí celého optimalizačního grafu. Zpočátku se jeho hodnota nastavuje na 

hodnotu 1, na základě algoritmu dopředného šíření chyby se optimalizuje (Pircher, 2017 str. 

15). 

4.2.5 Dopředné šíření signálu 

Abychom mohli Perceptron vůbec něco učit, musíme si nejdříve představit funkci, pomocí které 

může Perceptron určit svůj výstup. 

𝑦𝑦 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

+ 𝑏𝑏 

Vidíme, že se jedná o poměrně jednoduchou rovnici. Abychom získali výstup Perceptronu 

značený 𝑦𝑦 musíme vstupní hodnoty 𝑥𝑥  vynásobit jim náležící váhou 𝑤𝑤. Pokud má Perceptron 

více než jeden vstup, tak se hodnoty vstupů vynásobených váhami sečtou. Provede se takzvaný 

vážený součet a poté se pouze přičte hodnota prahu daného neuronu 𝑏𝑏 (Terhag, 2018 str. 18). 



   

 

   

 

4.3 Delta pravidlo učení 

4.3.1 Vysvětlení 

Toto pravidlo se převážně využívá pro učení neuronů s výhradně lineární přenosovou funkcí.  

Po úpravě se však dá využít i u neuronů s nelineární přenosovou funkcí.  

Pravidlo lze zapsat následovně: 

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 = 𝜀𝜀 ∗ 𝛿𝛿𝑖𝑖 ∗ 𝑥𝑥𝑘𝑘 

𝛿𝛿𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜) 

A co tyto dvě rovnice znamenají?  

 

Obrázek 5: Perceptron 

Podívejme se na obrázek jednoduchého neuronu. Vidíme, že tento neuron má tři vstupní 

hodnoty, které se značí jako 𝑥𝑥𝑘𝑘 (protože máme tři vstupy tak k = 1 až 3). Každý vstup má 

přiřazenou váhu 𝑤𝑤𝑖𝑖𝑖𝑖, kde i značí daný neuron. Výstup neuronu je 𝑦𝑦𝑖𝑖. Zbývá nám 𝜀𝜀, přičemž se 

jedná o takzvaný učící parametr, který určuje rychlost učení sítě.  



   

 

   

 

Abychom mohli spočítat 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖  musíme určit chybu neuronu, kterou dostaneme odečtením 

skutečného výstupu (𝑦𝑦𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜)) od požadovaného výstupu (𝑦𝑦𝑖𝑖) podle druhé rovnice, tím nám 

vyjde 𝛿𝛿𝑖𝑖. Poté dosadíme do první rovnice. Nové váhy spočítáme tak, že ke stávajícím přičteme 

nově získané 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 (Ploner, a další, 2009 stránky 10,11). 

4.3.2 Příklad 

Abychom fungování lépe pochopili, podívejme se na konkrétní příklad. 

Máme definované vstupy sítě (2 3 1) a chceme, aby výstup neuronu byl součet vstupů tedy 

6. Váhy neuronu jsou zpravidla náhodně vygenerovány a jedná se většinou o čísla v intervalu 

(-1 ; 1). V našem případě zvolíme váhy jako vektor (0.6 0.3 − 0.2).  

Nejprve provedeme vážený součet pro získání výstupu neuronu. Abychom si ulehčili práci, 

můžeme využít skalární součin vektorů, který se spočítá jako 𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 .               

Vyjde nám hodnota 1.9. Abychom dostali chybu funkce odečteme skutečný výstup od 

požadovaného výstupu tedy 𝛿𝛿𝑖𝑖  =  6 −  1.9 . Chyba je tedy 4.1. 

Za učící parametr dosadíme číslo 0,01 (proč použijeme právě tuto hodnotu, si vysvětlíme až 

v další kapitole). Teď už máme vše a stačí nám pouze dosadit do první rovnice. 

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 = (0.01 ∗ 4.1) ∗ (2 3 1) 

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖  =  (0.082 0.123 0.041)  

Pro upravení vah přičteme nově získané 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 a přičteme jej k aktuálním vahám. 

(𝑛𝑛𝑛𝑛𝑛𝑛) 𝑤𝑤𝑖𝑖𝑖𝑖  =  (0.082 0.123 0.041)  +  (0.6 0.3 − 0.2)  

(𝑛𝑛𝑛𝑛𝑛𝑛) 𝑤𝑤𝑖𝑖𝑖𝑖  =  (0.682 0.423 − 0.159) 

Abychom zjistili, zda je výpočet opravdu správný, můžeme opět vypočítat chybu neuronu 

s novými váhami a porovnat jí s předchozí chybou (Ploner, a další, 2009). Nová chyba by měla 

být menší než původní. A opravdu, nová chyba 3,526 je skutečně menší než původní hodnota 

4,1. A takto bychom mohli pokračovat, dokud by nebyla chyba minimální. 



   

 

   

 

4.4 Perceptron v praxi 

Abychom si fungování Perceptronu ukázali i v praxi a s problémy skutečného světa, vybral 

jsem dva, na kterých výše uvedený algoritmus vyzkoušíme. Oba problémy jsem zkoušel pomocí 

webu https://neuronal-network.netlify.app/, který jsem vytvořil a jehož zdrojový kód bude 

k dispozici.  

4.4.1 Ukázka 1 

 První problém bude lineárního charakteru. Půjde o to, aby byly vstupní hodnoty sečteny a poté 

vynásobeny číslem dva. Protože chceme konkrétní výstup neuronu bez nechtěné úpravy, 

potřebujeme k tomu přenosovou funkci, která může nabýt jakýchkoliv hodnot bez omezení. 

Proto využijeme přenosovou funkci „Identity“ kde f(x) = x. 

Jako vstupní hodnotu jsem zvolil vektor (1 3 4) tudíž výstup trénovacího vzorku bude číslo 

16. A jako neznámý vstup jsem zvolil vektor (2 3 2). Ideálně by tedy výsledek měl být 14. 

Učící parametr je standartně nastaven na 0.01 (proč tomu tak je si vysvětlíme později) a počet 

opakování jsem nastavil na 10 000. Výsledkem bylo číslo 11.27 a to znamená, že byla odchylka 

vůči skutečnému výsledku 19.5 %. Na první pohled se tato hodnota může jevit jako vysoká, ale 

musíme také brát v úvahu, že obvykle mívají neuronové sítě ohromné množství vstupů a počet 

opakování několik desítek milionů. Kvůli tomu jsou také často trénované na superpočítačích, 

které díky obrovskému výpočetnímu výkonu zvládnou takovýto počet opakování za extrémně 

krátkou dobu, na rozdíl od klasických počítačů či notebooků. 

Abych vám ale dokázal, že Perceptron skutečně funguje a „nevyhazuje“ jen náhodná čísla, 

použil jsem tři trénovací vzorky a zvolil 100 000 opakování. Použitá trénovací data byly vstupní 

vektory (1 3 4), (2 6 5), (0 7 3)  a výstupní vektor (16 26 20) . Tady byl již 

výsledek 13.999… s odchylkou takřka 0 % o poznání přesnější. Vidíme tedy že po přidání 

pouhých dvou trénovacích vzorků a zvýšení počtu opakování jsme dosáhli mnohem lepších 

výsledků. Platí tedy, že s nárůstem počtu vzorků a počtem opakování roste i přesnost výsledku 

perceptronu. 

https://neuronal-network.netlify.app/


   

 

   

 

4.4.2 Ukázka 2 

Jako druhý příklad jsem vybral známý problém „XOR“, který byl do jisté míry příčinou vzniku 

vícevrstvých sítí. XOR nebo česky Exkluzivní disjunkce, je pravdivá právě tehdy, pokud přesně 

jedna její část je pravdivá. Jinak je nepravdivá. Proč stojí právě tento problém za vznikem 

vícevrstvých sítí jsme si již uváděli. 

Tentokrát byly vstupy trénovacích vzorků vektory (0 0), (0 1), (1 0), (1 1) a výstupní 

vzorky vektor (0 1    1 0). 

Počet opakování jsem nastavil na 10 000 iterací. Po dosazení vektoru (1 1) vyšel výsledek 

0.66 oproti reálnému výsledku 0, což znamená, že odchylka byla 66 %, a to je opravdu hodně. 

Situace se nezměnila ani s navýšením počtu opakování na 1 000 000. Po dosazení toho samého 

vektoru vyšla znovu odchylka 66 % (Kvůli náhodnému zvolení vah nebyla hodnota identická, 

ale lišila se jen o pár tisícin, a to po zaokrouhlení vedlo ke stejnému výsledku).  

Proč tomu ale tak je? Abychom si mohli na tuto otázku odpovědět, musíme se nejprve pozorněji 

podívat ne tento konkrétní problém. Podívejme se tedy na XOR (Exkluzivní disjunkce) v grafu. 



   

 

   

 

 

Obrázek 6: Problém XOR (Exkluzivní disjunkce) 

V grafu můžeme vidět dvě skupiny, zelené puntíky jsou výstupy, kdy XOR vyšel 1 a naopak 

červené puntíky jsou ty, co vyšly nula. Teď vám dám malý úkol. Zkuste se zamyslet a pokuste 

se tyto dvě skupiny, tedy zelené a červené puntíky, od sebe oddělit přímkou. Správná odpověď 

je, že přímkou je rozdělit nelze, a to znamená, že jsou lineárně neseparovatelné. Výstup této 

ukázky tedy je, že jednoduchý perceptron nedokáže vyřešit příklady nelineárního charakteru. 

Kdo by chtěl ještě další důkaz, ukážeme si tento problém ještě na soustavě rovnic. Z fungování 

umělého neuronu popsaného výše, si lze odvodit následující rovnice. 

𝑂𝑂𝑤𝑤1 + 𝑂𝑂𝑤𝑤2 = 0   

1𝑤𝑤1 + 𝑂𝑂𝑤𝑤2 = 1 

𝑂𝑂𝑤𝑤1 + 1𝑤𝑤2 = 1 

1𝑤𝑤1 + 1𝑤𝑤2 = 0 



   

 

   

 

Úkolem je najít 𝑤𝑤1 a  𝑤𝑤2 takové, aby vyhovovaly všem čtyřem rovnicím. Vyjde nám, že příklad 

nemá řešení. 



   

 

   

 

5 VÍCEVRSTVÁ NEURONOVÁ SÍT 

V této kapitole si ukážeme vícevrstvé neuronové sítě a popíšeme si jejich stavbu. Řekneme si, 

co vůbec stálo za jejich vznikem. Poté se zaměříme na již lehce složitější učící algoritmus zvaný 

„Back propagation“ a na příkladu si ukážeme jeho fungování. Na závěr, tentokrát úspěšně, 

vyřešíme druhý příklad z předchozí kapitoly. Vyřešíme tedy problém zvaný „XOR“. 

5.1 Definice 

 

Obrázek 7: Vícevrstvá neuronová síť 

S příchodem Perceptronu roku 1958 nastal velký pokrok ve výzkumu neuronových sítí. Avšak 

když kolem roku 1989 Minsky a Papert přišli na to, že Perceptron dokáže řešit jen lineárně 

spravovatelné problémy, muselo přijít řešení. Vícevrstvá neuronová síť se skládá z libovolného 

množství vrstev, které jsou tvořeny mnoha navzájem propojenými neurony, popsané již 

v předchozí kapitole. Jednotlivé vrstvy rozdělujeme na vstupní, skryté a výstupní. 

V případě, že má síť více než jednu skrytou vrstvu, jako na obrázku, nazývá se hluboká 

neuronová síť (angl. Deep neuronal network).  



   

 

   

 

Právě takováto síť dokáže úspěšně vyřešit například problém XOR (Exkluzivní disjunkce) 

s kterým přišli Minsky a Papert. Celou síť si můžeme představit jako takový filtr, kde každá 

vrstva hledá jiné vlastnosti (Pircher, 2017 stránky 17,18). 

5.2 Dopředné šíření signálu vícevrstvé sítě 

Signál dopředného šíření u vícevrstvé sítě je velice podobný tomu v jednovrstvé síti. Avšak 

vypočítaný výstup jednoho neuronu nemusí automaticky být výstupem celé neuronové sítě, ale 

může sloužit i jako vstup do dalšího neuronu. A to je také hlavní princip algoritmu dopředného 

šíření vícevrstvé sítě. Když se podíváme na obrázek výše, zjistíme, že výstup jedné vrstvy slouží 

jako vstup vrstvy druhé, a takto to pokračuje až k vrstvě výstupní. 

5.3 Algoritmus zpětného šíření chyby (angl. Back propagation) 

5.3.1 Definice 

Back propagation je algoritmus minimalizující výslednou chybu neuronové sítě za pomoci 

gradientního sestupu, jedná se tedy opět o „Supervised learning“ neboli učení s učitelem. 

Gradientní sestup je algoritmus, pomocí kterého hledáme ideálně globální minimum neznámé 

funkce. 

Ale co to znamená? Pojďme si to ukázat na následujícím příkladu. Představte si horolezce, který 

stojí na vrcholku hory, a to uprostřed sněhové bouře tak silné, že je sotva vidět na krok. Aby se 

horolezec mohl dostat zpět domů do údolí, musí po malých krůčcích nahmatávat okolí a 

postupovat směrem většího klesání. Velikost kroku horolezce je v případě gradientního sestupu 

reprezentován takzvaným učícím parametrem (angl. Learning rate), který má vždy hodnotu 

mezi nulou a jedničkou.  

Pokud by byl definován nulou, znamenalo by to, že by se náš horolezec vůbec nepohyboval a 

nejspíš by na hoře umrzl. S neuronovou sítí by to bylo stejné, hodnoty vah by byly s každou 

iterací stále stejné, což znamená, že by se síť nic neučila. To si můžeme i velice snadno 

matematicky dokázat díky delta učícímu pravidlu, popsanému již v předchozí kapitole, z 

kterého do jisté míry bude vycházet i tento algoritmus.  



   

 

   

 

Jak jsme již popisovali, je výsledek chyby sítě vynásobený vstupy poté učícím parametrem a 

výsledná hodnota je pak přičtena k dosavadním hodnotám vah. Avšak kdyby byl parametr nula, 

tak by se k hodnotám přičetla pouze nula, což znamená, že by se hodnoty vah nezměnily. Pokud 

je ale naopak zvolen parametr moc velký, může se stát, že bude náš horolezec údolí 

přeskakovat, ale nikdy se do něj nedostane. Také proto je správné zvolení hodnoty tohoto 

učícího parametru velice důležité. 

Výše jsem uváděl, že se snažíme najít ideálně globální minimum funkce. Dostat se k tomuto 

minimu je však velice nepravděpodobné a ani se s tím nepočítá. Kdybychom si představili 

náhodnou funkci v prostoru, zjistili bychom, že minimum je více, avšak to největší je jen jedno, 

a to se nazývá minimum globální. Ostatní jsou minima lokální (Pircher, 2017 str. 27). Ale co 

se stane, když uvízneme právě v takovémto lokálním minimu? Stane se to, že se nedostaneme 

na nulovou chybu sítě, ale to nám vůbec nevadí. Kdybychom měli nulovou chybu, znamenalo 

by to, že funkce dokáže vložené vzorky identifikovat s přesností sta procent. Ale jak by to bylo 

s neznámými vzorky s podobnými rysy? Ty by rozpoznány nebyly, protože by síť měla nulovou 

toleranci a identifikovala by jen data identická s vloženými vzorky. To by však bylo pro náš 

typ problému, u kterého se počítá s určitou tolerancí neefektivní. 

 

 



   

 

   

 

5.3.2 Příklad 

 

Obrázek 8: Vícevrstvá neuronová síť (příklad) 

Abychom mohli začít počítat konkrétní příklad, musíme si nejprve definovat tvar neuronové 

sítě. V našem případě se jedná o tvar (2 2 2), to znamená tři vrstvy po dvou neuronech, 

jedna vstupní, jedna skrytá a jedna výstupní. 

Nejprve si určíme tréninkové vzorky. Vstupní vektor (0.5 0.3) musí mít právě dvě hodnoty, 

protože počet neuronů vstupní vrstvy je dva. To samé nastane také u výstupů, jelikož má 

výstupní vrstva také dva neurony budou i dva výstupy  𝑡𝑡1,2(0.1 0.3). Prahy mohou být buďto 

přímo uvnitř neuronu, nebo mohou fungovat jako další vstup do každé vrstvy. To znamená, že 

se v každé vrstvě navýší počet vstupů o jeden další. Přesně tak, jak je prezentováno v obrázku 

výše. 

Jako přenosovou funkci skryté vrstvy použijeme hyperbolický tangens, popsaný výše. 

Přenosová funkce výstupní vrstvy bude funkce „Identity“ to znamená funkce f(x) = x. Váhy 

máme, využijeme totiž ty z obrázku.  



   

 

   

 

Když už máme všechny počáteční hodnoty, pustíme se nejprve do dopředného šíření signálů 

podle rovnice popsané již dříve. 

Dopředné šíření skryté vrstvy 

𝑧𝑧_𝑖𝑖𝑖𝑖1 =  (0.1 ∙ 1)  +  (−0.1 ∙  0.5)  + (−0.1 ∙  0.3)  =  0.02 

𝑧𝑧_𝑖𝑖𝑖𝑖2 =  (0.2 ∙ 1)  +  (0.3 ∙  0.5)  +  (0.4 ∙  0.3)  =  0.47 

𝑧𝑧1 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.02)  =  0.02 

𝑧𝑧2 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.47)  =  0.43 

Pomocí těchto rovnic máme vypočítané výstupy skryté vrstvy, které teď použijeme jako vstupní 

hodnoty vrstvy výstupní. 

Dopředné šíření výstupní vrstvy 

𝑦𝑦_𝑖𝑖𝑖𝑖1 =  (0.0 ∙ 1)  + (−0.4 ∙  0.02)  + (0.1 ∙  0.43)  =  0.035 

𝑦𝑦_𝑖𝑖𝑖𝑖2 =  (0.3 ∙ 1)  +  (0.6 ∙  0.02)  +  (−0.2 ∙  0.43)  =  0.226 

𝑦𝑦1 =  0.035 

𝑦𝑦2 =  0.226 

Poté, co dostaneme výstupy celé neuronové sítě, jsme schopni vypočítat její chybu tím, že 

výsledek odečteme od námi na začátku definovaného výstupu. 

Chyba neuronové sítě 

𝑒𝑒1 =  0.1 −  0.035 =  0.065 

𝑒𝑒2 =  0.3 −  0.226 =  0.074 

Výpočet hodnot delta neuronů výstupní vrstvy  

Pomocí chyby můžeme vypočítat hodnotu 𝛿𝛿  výstupních neuronů.  



   

 

   

 

𝛿𝛿𝑘𝑘 = 2 ⋅ (𝑡𝑡𝑘𝑘 − 𝑦𝑦𝑘𝑘) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖𝑘𝑘) 

A teď nám stačí dosadit do rovnice. Také víme, že derivací funkce f(x) = x je hodnota 1. 

Můžeme ji taktéž rovnou dosadit a vyjdou nám dvě hodnoty. 

𝛿𝛿1 = 2 ⋅ (𝑡𝑡1 − 𝑦𝑦1) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖1)  =  2𝑒𝑒1 ∙  1  = 0.13  

𝛿𝛿2 = 2 ⋅ (𝑡𝑡1 − 𝑦𝑦2) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖2)  =  2𝑒𝑒2  ∙  1 =  0.148   

Výpočet hodnot delta neuronů skryté vrstvy 

δj = �δk wjk φ´ ( z_inj 
k=1

) 

Ano, tato rovnice možná vypadá trošku strašidelně, ale jakmile si ji vysvětlíme a vypočítáme, 

zjistíme, že to tak hrozné není. wjk jsou váhy mezi skrytou a výstupní vrstvou, δk jsou hodnoty 

delta výstupních neuronů, které jsme počítali v minulém kroku a φ´ ( z_inj )  je derivací 

hyperbolického tangentu a to je 1 − (𝑧𝑧)2. 

𝛿𝛿1 = (0.13 ∙ (−0.4)  +  0.148 ∙ 0.6) 𝜑𝜑´(𝑧𝑧_𝑖𝑖𝑖𝑖1)  =  0.0368 ∙  (1 −  (0.02)2 )  =  0.03679 

𝛿𝛿2 = (0.13 ∙ 0.1 +  0.148 ∙ (−0.2)) 𝜑𝜑´(𝑧𝑧_𝑖𝑖𝑖𝑖2)  =  −0.0166 ∙  (1 −  (0.43)2 )  =  −0.01353 

 

 

 

 

 

 

 



   

 

   

 

Aktualizace vah výstupní vrstvy 

Když už máme téměř vše spočítané, stačí nám provést aktualizaci vah podle vzorců, které jsme 

si vysvětlovali již v předchozí kapitole.  

𝛥𝛥𝑤𝑤𝑗𝑗𝑗𝑗 = 𝜀𝜀 ∗ 𝛿𝛿𝑘𝑘 ∗ 𝑧𝑧𝑗𝑗 

Tabulka 1 

NEURON 1 NEURON 2 

𝛥𝛥𝑤𝑤01 =  𝜀𝜀 ∙  0.13 ∙ 1 = 0.13 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤02 =  𝜀𝜀 ∙  0.148 ∙ 1 = 0.148 ∙ 𝜀𝜀 

𝛥𝛥𝑤𝑤11 =  𝜀𝜀 ∙  0.13 ∙  0.02 = 0.0026 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤12 =  𝜀𝜀 ∙  0.148 ∙ 0.02 = 0.00296 ∙ 𝜀𝜀 

𝛥𝛥𝑤𝑤21 =  𝜀𝜀 ∙  0.13 ∙ 0.43 = 0.0559 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤22 =  𝜀𝜀 ∙  0.148 ∙ 0.43 = 0.06364 ∙ 𝜀𝜀 

 

Za učící parametr  𝜀𝜀  si dosadím 0.01 a podle rovnice 𝑤𝑤𝑗𝑗𝑗𝑗  =  𝑤𝑤𝑗𝑗𝑗𝑗  +  𝛥𝛥𝑤𝑤𝑗𝑗𝑗𝑗 aktualizujeme váhy. 

Tabulka 2 

NEURON 1 NEURON 2 

𝑤𝑤01 = 0.013 𝑤𝑤02 =  0.3148 

𝑤𝑤11 =  −0.39974 𝑤𝑤12 =  0.600296 

𝑤𝑤21 =  0.10559 𝑤𝑤22 =  −0.193636 

 

 

 



   

 

   

 

Aktualizace vah skryté vrstvy 

Ten samý postup použijeme i pro aktualizaci vah skryté vrstvy. 

𝛥𝛥𝑣𝑣𝑖𝑖𝑖𝑖 = 𝜀𝜀 ∗ 𝛿𝛿𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖 

Tabulka 3 

NEURON 1 NEURON 2 

𝛥𝛥𝑣𝑣01 =  𝜀𝜀 ∙  0.03679 ∙ 1 = 0.03679 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣02 =  𝜀𝜀 ∙  (−0.01353) ∙ 1 = −0.01335 ∙ 𝜀𝜀 

𝛥𝛥𝑣𝑣11 =  𝜀𝜀 ∙  0.03679 ∙  0.5 = 0.0184 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣12 =  𝜀𝜀 ∙  (−0.01353) ∙ 0.5 = −0.006765 ∙ 𝜀𝜀 

𝛥𝛥𝑣𝑣21 =  𝜀𝜀 ∙  0.03679 ∙ 0.3 = 0.011 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣22 =  𝜀𝜀 ∙  (−0.01353) ∙ 0.3 = −0.00406 ∙ 𝜀𝜀 

 

Za učící parametr  𝜀𝜀  si opět dosadím 0.01 a podle rovnice 𝑣𝑣𝑖𝑖𝑖𝑖  =  𝑣𝑣𝑖𝑖𝑖𝑖  +  𝛥𝛥𝑣𝑣𝑖𝑖𝑖𝑖 aktualizujeme 

váhy. 

Tabulka 4 

NEURON 1 NEURON 2 

𝑣𝑣01 = 0.103679 𝑣𝑣02 =  0.18665 

𝑣𝑣11 =  −0.09816 𝑣𝑣12 =  0.2993235 

𝑣𝑣21 =  −0.0989 𝑣𝑣22 =  0.399594 

 

A takto by vypadala jedna iterace této neuronové sítě (Dolezel, 2020). Abychom však dokázali, 

že se výsledná chyba opravdu zmenšuje, provedl jsem znovu výpočet dopředného šíření, 

tentokrát však s aktualizovanými váhami. Chyby 𝑒𝑒1 a 𝑒𝑒2 mi skutečně vyšly menší. 



   

 

   

 

 A to jsem chtěl dokázat. Chyba se opravdu zmenšila a kdybychom tento postup opakovali 

vícekrát, chyba by se ještě zmenšila. 

𝑒𝑒1  =  0.064 

𝑒𝑒2  =  0.021 

5.4 Vícevrstvá neuronová síť v praxi 

V předchozí kapitole o perceptronu jsme si ukázali jeho funkci a zároveň jeho možnosti využití. 

V druhém příkladu jsme zjistili, že je jeho využití značně omezeno a že si nedokáže poradit 

s nelineárním problémem XOR. Z tohoto důvodu si tento příklad zopakujeme a použijeme 

přitom vícevrstvou síť, jejíž fungování jsme si vysvětlili výše. Pro výpočet tohoto příkladu jsem 

použil programovací jazy Python, jehož výhodou byla knihovna zvaná „Numpy“, která mi 

pomohla s maticemi. 

Abychom mohli pokračovat, musíme si opět nejdříve definovat tvar sítě. Pro zjednodušení jsem 

použil ten nejjednodušší možný, to znamená jedna vstupní vrstva, jedna skrytá vrstva a vrstva 

výstupní. 

Jako vstupy trénovacích vzorků jsem použil vektory (0 0), (0 1), (1 0), (1 1)  a 

výstupní vzorky vektor (0 1    1 0). V podstatě stejné trénovací vzorky, jako v předchozí 

kapitole. Jako přenosovou funkci jsem zvolil hyperbolický tangens. Proč, to si ukážeme později. 

Počet opakování byl tentokrát 10 000. Po dosazení vektoru (0 1) mi výsledek vyšel 0.999, to 

znamená odchylka 0.1 %, což je velice blízko ideální hodnotě. 

Nyní se podíváme na graf, který nám ukáže, jak moc odchylka (angl. Loss) klesala v závislosti 

na počtu opakování (angl. Epochs). 



   

 

   

 

 

Obrázek 9: Graf klesající chyby (Tanh) 

 

Můžeme vidět, že od 2 000 opakování se odchylka takřka nezměnila a to znamená, že jsme 

mohli teoreticky celý proces učení zastavit u 2 000 opakování. Proč jsem to neudělal má ale 

důvod, a to ten, že bych Vám chtěl ukázat rozdíl ve zvolení správné přenosové funkce. Když 

se teď podíváme na stejný graf jen s tím rozdílem, že byla použita přenosová funkce sigmoid a 

ne hyperbolický tangens, zjistíme, že byl celý učící proces značně pomalejší a výsledek 0.905 

byl také o poznání méně přesný. 



   

 

   

 

 

Obrázek 10: Graf klesající chyby (Sigmoid)  

Abychom si udělali představu, jak moc by bylo použití funkce sigmoid pomalejší, provedl jsem 

srovnání. Pro dosažení stejné míry přesnosti, v našem případě s odchylkou 0.01, potřebujeme 

u sítě s použitou funkcí sigmoid provést 10 074 opakování, kdežto s funkcí hyperbolický 

tangens pouze 527.  

Vidíme tedy, že zvolení vhodné přenosové funkce se značně odráží na celkové efektivitě celé 

sítě. 

 



   

 

   

 

6 ZÁVĚR 

Cílem této práce bylo vytvořit funkční model neuronové sítě a prezentovat její funkčnost na 

příkladu. Tento cíl jsem splnil a sítě jsem vytvořil dvě. Jednu, na které jsem ukázal funkčnost 

jednovrstvé neuronové sítě, zároveň jsem odhalil i její nedostatky. A síť druhou, která právě 

nedostatky jednovrstvé sítě dokázala vyřešit. Jako příklad jsem použil problém XOR, který je 

známý tím, že ho nelze lineárně vyřešit. Abych se ale vůbec dostal k řešení tohoto problému, 

musel jsem nejprve vysvětlit fungování umělé neuronové sítě a všechny náležitosti k tomu 

patřící. Jelikož jsem nenašel dost užitečných zdrojů na téma umělých neuronových sítí 

v českém jazyce, musel jsem dohledat cizojazyčné zdroje. Šlo především o odborné 

vysokoškolské práce. A protože velká část výzkumů umělé inteligence probíhá v Německu, je 

i většina mých zdrojů v německém jazyce. Spolu s matematickým fungováním neuronové sítě 

jsem se zlehka podíval i do její historie, která, jak jsem zjistil, je mnohem delší, než jsem 

předpokládal. Další, pro mě náročný úkol, bylo neuronovou síť naprogramovat a na příkladu 

také otestovat. 

Dle mého názoru jsem vytyčené cíle mé práce splnil, avšak musím přiznat, že celková náročnost 

tohoto tématu byla nad má očekávání. I přesto si ale myslím, že jsem do tématu do jisté míry 

pronikl a byl bych schopen s ním nadále pracovat. Největší překážkou bylo pro mne pochopit 

algoritmus zpětného šíření chyby, kde byla použita vyšší matematika, mně předtím neznámá. 

Nakonec jsem to však zvládl a mohl jsem dopsat i tuto kapitolu mé práce. 

 Řekl bych, že pro mě byla tato práce přínosem a jistě jím bude i pro každého, kdo si jí přečte. 

Jedná se o velice aktuální téma s velkým potencionálem, je tedy přínosné se mu podrobněji 

věnovat.  
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9 PŘÍLOHY 

Součástí této práce bylo také vytvoření programu. Oba programy najdete na přiloženém usb 

flash disku, v případě elektronické verze této práce, ve složce programy.  
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