
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor č. 1: Matematika a statistika

Neuronové sítě

Maximilián Alexander Mašek
Plzeňský kraj Plzeň 2022

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor č. 1: Matematika a statistika

Neuronové sítě

Neural networks

Autoři: Maximilián Alexander Mašek
Škola: Gymnázium Františka Křižíka, Sokolovská 1165/54, 323 00
Plzeň
Kraj: Plzeňský kraj
Konzultant: Mgr. František Kaska

Plzeň 2022

Prohlášení

Prohlašuji, že jsem svou práci SOČ vypracoval/a samostatně a použil/a jsem pouze prameny a
literaturu uvedené v seznamu bibliografických záznamů.

Prohlašuji, že tištěná verze a elektronická verze soutěžní práce SOČ jsou shodné.

Nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb.,
o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů
(autorský zákon) ve znění pozdějších předpisů.

V Plzni dne 21.3.2022 ………………………………………………
 Maximilián Alexander Mašek

Poděkování

Tímto bych chtěl rád poděkovat panu Mgr. Františku Kaskovi, který mi při práci pomohl, vždy

když jsem potřeboval. Na závěr bych chtěl poděkovat i panu Mgr. Danielu Namovi, který si

vzal ten čas a vysvětlil nám všechny náležitosti psaní této práce.

Anotace

Ve své práci jsem se zabýval neuronovými sítěmi a jejich matematickým principům. Cílem mé

práce bylo vysvětlit fungování neuronových sítí a zároveň vytvořit model, jehož funkčnost bych

ukázal na konkrétním příkladu. K vytvoření takového modelu jsem použil programovací jazyk

Python, který je pro tuto práci z mnoha důvodů výhodnou volbou. V programu byla použita

knihovna zvaná „Numpy“, která výrazně ulehčila práci s maticemi a vektory.

Klíčová slova

Neuron; Neuronová síť; Perceptron; Přenosová funkce; Učící pravidlo; Učící parametr; Učení

s učitelem;

Annotation

In my work, I dealt with neural networks and their mathematical functioning. The goal of my

work was to explain the functioning of neural networks and create a functional model, which

functionality I would show on an example. To create such a model, I used the Python

programming language, which is a convenient option for this work, for many reasons. A library

called "Numpy" was used in the program, which greatly facilitated the work with matrices and

vectors.

Keywords

Neuron; Neural network; Perceptron; Activation function; Learning rule; Learning rate;

Supervised learning;

Obsah

1 Úvod .. 8

2 Úvod do neuronových sítí ... 10

2.1 Definice ... 10

2.2 Využití ... 10

2.3 Historie neuronových sítí ... 11

3 Přenosová funkce .. 14

3.1 Definice ... 14

3.2 Nejpoužívanější přenosové funkce .. 15

3.2.1 Skoková funkce .. 15

3.2.2 Sigmoidní funkce ... 16

3.2.3 ReLU funkce .. 17

3.2.4 Hyperbolický tangens ... 18

4 Jednovrstvá neuronová síť (Perceptrton) .. 20

4.1 Definice ... 20

4.2 Stavba Perceptronu .. 20

4.2.1 Vstupy .. 20

4.2.2 Váhy ... 21

4.2.3 Výstupy .. 21

4.2.4 Prahy ... 21

4.2.5 Dopředné šíření signálu .. 21

4.3 Delta pravidlo učení ... 22

4.3.1 Vysvětlení ... 22

4.3.2 Příklad .. 23

4.4 Perceptron v praxi .. 24

4.4.1 Ukázka 1 ... 24

4.4.2 Ukázka 2 ... 25

5 Vícevrstvá neuronová sít ... 28

5.1 Definice ... 28

5.2 Dopředné šíření signálu vícevrstvé sítě ... 29

5.3 Algoritmus zpětného šíření chyby (angl. Back propagation) 29

5.3.1 Definice .. 29

5.3.2 Příklad .. 31

5.4 Vícevrstvá neuronová síť v praxi .. 36

6 Závěr ... 39

7 Bibliografie ... 40

8 Seznam obrázků a tabulek .. 41

9 Přílohy ... 42

1 ÚVOD

V této práci jsem se zaměřil na umělé neuronové sítě. A o co se vlastně jedná? Umělé neuronové

sítě jsou matematickým modelem biologických neuronových sítí využívaných naším mozkem.

Teď ve zkratce víme, o co se jedná, ale k čemu vůbec slouží? Umělé neuronové sítě nám dávají

možnost řešit i nelineární problémy, které by klasický program nevyřešil. To znamená, že

kdybychom si v případě nelineárního problému vstupní vzorky vyjádřili v grafu, zjistili

bychom, že by je nebylo možné rozdělit pomocí přímky. Kdybychom se podívali na náš svět,

zjistíme že málokterý problém je lineární. To že by ho klasický program nedokázal vyřešit není

úplně přesné, bylo by to ale velice náročné, protože bychom všechny souvislosti, které se

neuronová síť naučí sama, museli ručně vypsat. A to je ta průlomová myšlenka. Není tedy lepší,

abychom program naučili fungovat, aniž bychom museli vlastnosti ručně vypisovat?

A právě tato myšlenka, vytvořit umělé vědomí, provází lidstvo již velice dlouho. Výsledkem

tohoto hledání jsou, již výše zmíněné, umělé neuronové sítě, které jsou podstatou defacto každé

umělé inteligence dnešní doby. Na rozdíl od lidského mozku, který má kolem sto miliard

neuronů, dokážeme zatím vytvořit sítě s miliony neuronů. Proto bych řekl, že k vytvoření

skutečného funkčního vědomí nás čeká ještě velmi dlouhá cesta. To ale v žádném případě

neznamená, že nám jsou umělé neuronové sítě k ničemu, ba naopak. Dnes zažívají obrovský

rozmach a jsou hojně využívány. Například u autonomního řízení vozidel, jako třeba prototypy

firmy Tesla, nebo u autopilota v letadlech. Používají se také u programů pro rozpoznávání

obličej, jako třeba takzvané „FaceID“ značky Apple, nebo „Windows Hello“ značky Microsoft.

Hlavní předností neuronových sítí je jejich univerzální využití, ať už v těžkém průmyslu, nebo

třeba v medicíně a v mnohých dalších oborech. Zkrátka, jejich možnosti jsou obrovské a dají

se implementovat téměř všude. A to je také důvod, proč je aktuálně umělá inteligence tak

populární.

 Mým hlavním cílem bylo osvětlit toto téma i těm, co nedisponují odbornými znalostmi

v oboru. Musím také dodat, že ač se jedná o stále diskutovanější téma, je opravdu těžké najít

relevantní zdroje v českém jazyce, které by ale zároveň byly pochopitelné také pro člověka bez

odborných znalostí. Myslím si, že pochopit neuronové sítě je pro nás velice důležité a čím více

lidí se tomuto tématu bude věnovat, tím bude, dle mého názoru, rychlejší pokrok.

Zároveň bych řekl, že je to velikým lákadlem, zvlášť pro mladou generaci, protože nedostatek

odborníků a zároveň zvyšující se poptávka je dobrou příležitostí naskočit do tohoto oboru.

Z mého pohledu bude umělá inteligence ve světě hrát čím dál tím větší roli. Musím však dodat,

že bez základních znalostí matematiky se u čtení této práce neobejdete. Přečtení této práce

doporučuji každému nadšenci do umělé inteligence, který by chtěl také zlehka porozuměti

jejímu fungování.

2 ÚVOD DO NEURONOVÝCH SÍTÍ

V této kapitole si nejprve vysvětlíme, co to umělé neuronové sítě jsou a jak jsou inspirovány

fungováním lidského mozku. Poté se podíváme, kde a jak se tyto sítě v dnešní době využívají.

A nakonec zlehka zavítáme také do historie a představíme si například první funkční model

umělého neuronu.

2.1 Definice

Umělá neuronová síť je systém, který zpracovává informace, skládající se z množství jednotek

(neuronů), které si na základě daného propojení posílají informace ve formě aktivace, či naopak

„deaktivace“ jednotlivých neuronů. Do jisté míry jsou tato propojení odrazem struktury

biologického mozku. Aby se neuronové sítě mohly učit, potřebují učící algoritmy, kterých

existuje velké množství. Velkou výhodou je univerzálnost využití. Takovéto sítě umožňují řešit

problémy v různých oblastech statistiky, technologie nebo ekonomie. Protože neuronovou síť

aplikujeme na konkrétní problém, nedokáže se, na rozdíl od našeho mozku, zaměřit i na řešení

dalších problémů (Ebert, 2019 str. 6).

2.2 Využití

Ač se to na první pohled nezdá, setkáváme se s nimi téměř denně a to například, když hledáme

obrázky pomocí internetového prohlížeče Google.

Možné využití neuronových sítí stále roste, a to hlavně díky neustále zvyšujícímu se výkonu

počítačů, díky kterému se potřebná doba pro trénování těchto sítí značně zkracuje. Dalším

důvodem je také fakt, že se databáze vzorků zvětšují a větší množství vzorků má za následek

zvýšení přesnosti sítě.

Je neuvěřitelné, ale zároveň také děsivé, co všechno se za pár let dokázaly naučit. Umělé

neuronové sítě najednou umí i to, co dříve zvládl jen člověk jako například skládat písně, hrát

šachy nebo i psát básně. Relativně nový program zvaný „GPT-3“ od neziskové společnosti

OpenAI dokáže dokonce psát programy vlastní, nebo vést konverzaci.

Musím přiznat, že ani já jsem zprvu nedokázal rozeznat báseň vytvořenou programem a báseň

vytvořenou člověkem. Až po důkladném pročtení bylo znát, že ta báseň napsaná programem

postrádala hlubší význam.

Neuronové sítě využívá také velké množství aplikací i her, jako například známá funkce

„Windows Hello“, která díky uložení snímku Vašeho obličeje dokáže později při přihlášení

určit, zda se jedná o Vás, či nikoliv. Nespornou výhodou je přípustná odchylka. To znamená,

že se nemusí jednat o 100% totožný snímek, ale stačí dostatek společných vlastností.

Umělé neuronové sítě však dokážou zachránit i život. V medicínské sféře se testují programy

pro poznávání zhoubných nádorů podle obrázků. Na základě mnoha testů lze tvrdit, že mají

lepší výsledky než člověk. Velkou výhodou je také fakt, že diagnózu provede program takřka

okamžitě a bez potřeby experta v oboru. A právě včasná diagnóza může pacientům mnohdy

zachránit život.

2.3 Historie neuronových sítí

Historie neuronových sítí sahá od roku 1943 až do současnosti. Přelomovými objevy byly

Perceptron na konci 50. let a algoritmus zpětného šíření chyby (angl. Back-Propagation), v

polovině 70. let. Mezi tím byla takzvaná zima, ve které byla zpochybněna užitečnost a

proveditelnost neuronových sítí. Hlavní překážkou byl v té době nedostatek výkonného

hardwaru. Lidský mozek je studován již několik tisíc let. První krok k umělým neuronovým

sítím byl však učiněn až v roce 1943, kdy neurofyziolog Warren McCulloch a mladý matematik

Walter Pitts napsali článek o tom, jak neurony vůbec fungují. Vytvořili pomocí elektrických

obvodů jednoduchý neuron, který měl více vstupních signálů a pouze jeden výstup.

V roce 1949 opět otevřel koncept neuronů Donald Hebb, když ve své knize „The Organization

of Behaviour“ poukázal na to, že „pokud biologický neuron aktivuje jiný neuron, tak spojení

mezi nimi zesílí. To znamená, že váha mezi dvěma neurony se zvětší pokaždé, když mají stejný

výstup. Pokud se dva neurony aktivují ve stejný čas, je posíleno jejich spojení“ (Farkaš, 2019

str. 3). S přibývajícím výkonem tehdejšího hardwaru bylo nakonec v roce 1950 možné

nasimulovat hypotetickou neuronovou síť. Poprvé se o to pokusil vědec z IBM Nathanial

Rochester. Bohužel však jeho pokus skončil neúspěchem.

V roce 1957 vynalezl Frank Rosenblatt Perceptron. Jednalo se v podstatě o McCullochův a

Pittsův model, ale s přidaným algoritmem učení, který již dokázal rozdělit lineárně

separovatelná data. Již v roce 1958 Frank Rosenblatt využil svůj algoritmus Perceptronu pro

vývoj prvního neuropočítače „Mark I Perceptron“ v laboratoři „Cornell Aeronautical

Laboratory“. Za pomocí senzoru o velikosti, 20krát 20 pixelů dokázal rozpoznat jednoduché

číslice (Ebert, 2019 str. 9). V roce 1960 Bernhard Vitro a Marcia Hoff, ze Stanfordské

Univerzity, vyvinuli modely, které nazvali "Adeline" a "Madaline". Adeline byl vyvinut tak,

aby rozpoznal binární obrazce, takže pokud četl bity z telefonní linky, mohl předpovědět další

bity. Madaline byla první neuronová síť aplikovaná na problém reálného světa za pomoci

adaptivního filtru, který eliminuje ozvěny na telefonních linkách. Přestože je tento systém

velice starý, je stále komerčně využíván (Volná, 2002). Tento model využíval učící pravidlo

Delta, které si popíšeme později (Ebert, 2019 str. 9).

 „V roce 1969 Marvin Minsky a Seymour Papert ve své knize Perceptrons ukázali několik

vážných nedostatků Perceptronu. Nejdůležitější poznatek byl, že Perceptrony nejsou schopny

řešit triviální nelineární problém typu XOR (Exkluzivní disjunkce). Tento poznatek vedl k

velkému poklesu zájmu o umělé neuronové sítě většiny vědců“ (Farkaš, 2019 str. 4).

V 80. letech přichází Kunihiko s konvolučními neuronovými sítěmi obsahující více

neuronových vrstev a svým modelem nazvaným „Neocognitron“ (Ebert, 2019 str. 9).

Na začátku 90. let nastává velký rozmach, a například i známá americká agentura DARPA

začala aktivně podporovat výzkum neuronových sítí, zanedlouho následovaly i jiné organizace

(Volná, 2002). V roce 1986 přichází algoritmus zpětného šíření chyby, též Back-Propagation

pro vícevrstvé neuronové sítě (Volná, 2002). Problém Perceptronu, který nedokázal vyřešit

nelineární problémy, se však podařilo vyřešit roku 1989, kdy tým New Yorské univerzity již

známý algoritmus Back-Propagation aplikoval na konvoluční sítě. Model této neuronové sítě

pojmenovaný „LeNet“ byl poté úspěšně otestován na datech tvořící ručně psané číslice. Tento

model byl od roku 1990 ve Spojených státech využívána pro automatické rozpoznání

poštovního směrovacího čísla. V roce 2011 byl algoritmus tohoto modelu upraven tak, aby

mohl fungovat za pomoci grafické karty, což několikanásobně zrychlilo proces trénování a

otevřely se možnosti s daleko větším množstvím trénovacích dat.

Umělé neuronové sítě fungující právě na tomto principu, byly také první, které dokázaly předčít

člověka v rozpoznání obrazců (Ebert, 2019 str. 10).

Tím to však nekončí. Také dnes přicházejí vědci stále s různými modifikacemi těchto

základních algoritmů, které dosahují čím dál lepších výsledků. Dalšímu výzkumu nahrává také

fakt, že je dnes umělá inteligence využívána téměř všude a možné využití stále roste. Další

nespornou výhodou je také prudce stoupající výkon dnešních počítačů, čímž se otvírají dveře

komplexnějším neuronovým sítím s větším množstvím trénovacích dat.

3 PŘENOSOVÁ FUNKCE

V této kapitole se podíváme již na konkrétní funkci, která je podstatná pro fungování neuronové

sítě tím, že se na základě ní mění hodnota výstupu jednotlivých neuronů sítě. Vysvětlíme si,

proč je přenosová funkce potřeba a jak vlastně funguje. Také si podrobně představíme ty

nejznámější a dnes nejpoužívanější. Ukážeme si jejich výhody a nevýhody a rozdíl mezi

použitím funkce lineární či nelineární.

3.1 Definice

Přenosová, nebo také aktivační funkce neuronu, definuje jeho výstup na základě sady vstupů.

Nejprve se tedy provede součet vstupů vynásobených váhami, neboli vážený součet. Funkce

pak provede určitý typ operace, která závisí na námi vybrané přenosové funkci, aby

transformovala součet na číslo mezi libovolnou dolní hranicí a libovolnou horní hranicí.

Přenosová funkce je vlastně inspirována aktivitou v našem mozku, ve kterém jsou neurony

aktivovány různými podněty. Vysvětleme si to na následujícím příkladu. Pokud ucítíte něco

příjemného, tak určité neurony v mozku na základě podnětů vyšlou signál, čímž se aktivují, jiné

naopak signál nevyšlou a zůstanou v inaktivním stavu. To může být také reprezentováno

binárně, což znamená nulou pro neaktivaci a jedničkou pro aktivaci neuronu (Borzymowski,

2019 str. 22). Ale jsou tyto funkce vůbec potřeba a nešlo by to i bez nich?

Odpověď na tuto otázku není úplně jednoznačná. Mohu mít neuron bez přenosové funkce.

Takový neuron by tedy využil lineární funkci f(x) = x. Problém však je ten, že by takový model

mohl řešit jen čistě lineární problémy, pro které by ale taková neuronová síť nebyla vůbec

potřeba a rychleji by se vyřešily klasickou formou. Zajímavější to však bude v případě řešení

nelineárního problému jako třeba u klasifikace či regrese. Představme si následující problém.

Potřebujeme od sebe rozlišit následující vzorky: obrázky lidí a obrázky zvířat. Kdybychom si

vzorky zvířat i lidí definovali jako body grafu, zjistili bychom, že by se pomocí nějaké

nelineární funkce dali rozdělit do dvou tříd, a to je přesně to, o co nám jde. Pokud bychom ale

přenosovou funkci nepoužili, museli bychom vzorky rozdělit pomocí přímky, což by v našem

případě nebylo možné.

3.2 Nejpoužívanější přenosové funkce

3.2.1 Skoková funkce

Obrázek 1: Graf skokové funkce

Toto je vůbec nejstarší přenosová funkce, která byla využívána již McCullochovím modelem

neuronu. Jedná se o jednoduchou binární funkci. To znamená, že výstup je buď hodnota nula,

nebo jedna. Tedy pokud je vstupní hodnota záporné číslo, bude výstup této funkce číslo nula,

kdežto když bude vstupní hodnota kladná nebo nula, bude výstup funkce číslo jedna.

Velký problém této přenosové funkce však nastává při klasifikaci vstupů, kde se zjišťuje, jaké

třídě vzorek náleží na základě libovolných společných rysů. Funkce by tedy mohla hodnotu

jedna přiřadit pouze jedné třídě a zbytek tříd by musel mít hodnotu nula. Při takové klasifikaci

je však vysoká pravděpodobnost, že se aktivuje více neuronů, což by znamenalo, že by

neuronová síť musela vzorek přiřadit více třídám současně. A to je také důvod proč se tato

přenosová funkce již moc nevyužívá (Borzymowski, 2019 str. 22).

3.2.2 Sigmoidní funkce

Obrázek 2: Graf sigmoidní funkce

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒− 𝑥𝑥

Podívejme se teď na přenosovou funkci zvanou „Sigmoid“. Jedná se o standartní logistickou

křivku. Funkce přijímá vstup a pokud má vstup velmi negativní hodnotu, bude výstup této

funkce číslo velmi blízké nule. Naopak pokud je hodnota vstupu velmi kladná, bude výstup

funkce číslo blízké jedné. Funkce sigmoid má tedy dolní hranici hodnotu nula a horní hranici

hodnotu jedna. Jeden z problémů této přenosové funkce je však ten, že čím vyšší mají vstupy

absolutní hodnoty, tím více se stávají nerozlišitelné, neboli rozdíl mezi nimi se stává velmi

malým. Kdyby tento problém nastal, znamenalo by to, že by se síť i po dlouhé době trénování

prakticky nic nenaučila (Ebert, 2019 str. 15).

3.2.3 ReLU funkce

Obrázek 3: Graf funkce ReLU

𝑓𝑓(𝑥𝑥) = �0, 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0

Tato přenosová funkce (angl. Rectified Linear Unit) je jedna z nejpoužívanějších

v klasifikačních problémech dnešní doby, a to hlavně díky jejímu nenáročnému výpočtu ale i

přesto dobrým vlastnostem. Když se podíváme na graf výše, zjistíme, že se jedná o poměrně

jednoduchou funkci. Vidíme, že pokud je hodnota vstupu menší než nula, je výstup přenosové

funkce nula, avšak pokud je vstup větší nebo roven nule, svoji hodnotu si zachová a výstup

funkce bude stejný jako její vstup neboli f (x) = x. Jedna z nevýhod je, že ve funkci není rozdíl

mezi záporným číslem a nulou, což může vést k problémům. A proto existuje více modifikací

této funkce jako například takzvaný „Leaky ReLU“ kde je f(x) v záporných hodnotách rovna

p*x (p je parametr za který dosadíme číslo v závislosti na chtěném sklonu funkce). Protože si

zde ale představujeme jen základní přenosové funkce, nebudeme se této modifikaci dále

věnovat. Je však dobré vědět že existuje.

Narozdíl od sigmoidní funkce, která má jako výstup vždy nějakou hodnotu mezi nulou a

jedničkou, narážíme u přenosové funkce „ReLU“ na problém, že se kvůli možnému nulovému

výstupu můžou některé neurony stát neaktivními, a to i po celou dobu trénovacího procesu,

čímž je značně narušena efektivita celé neuronové sítě. Toto můžeme ale vidět i jako výhodu,

protože tím, že se neurony stanou neaktivními, se značně zjednoduší výpočet, a tudíž se zkrátí

i potřebná doba pro trénování sítě (Ebert, 2019 str. 17).

3.2.4 Hyperbolický tangens

Obrázek 4: Graf funkce hyperbolický tangens

𝑓𝑓(𝑥𝑥)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) =
(𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥 + 𝑒𝑒+𝑥𝑥)

Funkce hyperbolický tangens je také hojně využívána a je často upřednostňována před

sigmoidní přenosovou funkcí. A to proto, že oproti sigmoidní funkci nabývá hyperbolický

tangens hodnot mezi 1 a –1, čímž se neztrácí hodnota záporného čísla a také je výsledná

hodnota blíže nule, což je lepší pro učící algoritmus.

Nevýhodu má ale stejnou, čím jsou vstupní čísla v absolutní hodnotě větší, tím je rozdíl mezi

nimi menší. Neboli, pokud jsou vstupní čísla příliš vysoká stane se rozdíl mezi nimi

zanedbatelný, a to může mít za následek, že by je neuronová síť nedokázala rozlišit (Ebert, 2019

str. 16). Jediný případ, kdy je dávána přednost sigmoidní funkci je u výstupní vrstvy klasifikační

neuronové sítě, u které potřebujeme zjistit, jak moc si je síť jistá, že se jedná o danou třídu.

Výstup tedy bude číslo mezi nulou a jedničkou, a to poté můžeme i snáze vyjádřit procentuálně.

4 JEDNOVRSTVÁ NEURONOVÁ SÍŤ (PERCEPTRTON)

V této kapitole si ukážeme základní jednovrstvou neuronovou síť zvanou „Perceptron“ a

podrobně se podíváme na její stavbu. Na základě nabytých vědomostí z předchozích kapitol si

na příkladu vysvětlíme fungování jednoduchého učícího pravidla. Spolu s těmito vědomostmi

si ukážeme fungování Perceptronu na dvou příkladech s již reálnými problémy. Také si

řekneme, proč druhý příklad nelze jednovrstvou neuronovou sítí vyřešit a tím si zároveň

odpovíme na otázku proč vůbec vznikly i sítě vícevrstvé.

4.1 Definice

Abychom mohli začít vytvářet vlastní neuronovou síť, musíme si nejdříve představit neuron a

neuronovou síť, která obsahuje pouze jediný neuron. Ta nejjednodušší se nazývá Perceptron.

Perceptron je nejjednodušším matematickým modelem neuronové sítě, inspirovaným

skutečným fungováním neuronů v živém organismu.

Jednoduše řečeno, funguje takový Perceptron tak, že má x vstupů a jeden výstup. Vstupy se

vynásobí zpočátku náhodně vygenerovanými váhami a suma těchto čísel plus práh (viz níže) je

poté porovnána s požadovaným výsledkem. Tím dostaneme takzvanou chybu neuronové sítě,

pomocí které se později budou optimalizovat váhy tak, aby byla ve výsledku chyba co nejmenší

(Farkaš, 2019 str. 2). To tedy znamená, že se jedná o „Supervised learning“ neboli učení

s učitelem, kdy jsou sítí předloženy vstupní ale i výstupní trénovací vzorky.

4.2 Stavba Perceptronu

4.2.1 Vstupy

Vstupy Perceptronu jsou podněty z vnějšího prostředí, charakterizovány libovolným reálným

číslem. V našem případě se jedná o vektor hodnot X, který obsahuje různé informace o

zkoumané věci. Vstupy mohou být například i číselně vyjádřené obrázky a právě na tomto

principu funguje jakékoliv rozpoznání obličeje, zvířete nebo jiné věci. Vstup je vždy vyjádřen

libovolnou číselnou řadou.

4.2.2 Váhy

Váhy jsou zpočátku náhodně vygenerovaná čísla, který mi se poté násobí vstupy. Hodnoty vah

i prahů jsou právě to, kde se projeví učící proces. Jejich hodnota se mění na základě vypočítané

chyby sítě. Na obrázku jsou váhy definované jako ohodnocení hran.

4.2.3 Výstupy

Výstupy jsou výsledky neuronové sítě, které se počítají sumou vstupů vynásobených váhami.

Díky výstupu sítě můžeme vypočítat takzvanou chybu sítě, a to tak, že od požadovaného

výsledku odečtu skutečný výstup sítě. Na základě této chyby je možné pomocí dopředného

algoritmu postupně měnit hodnotu jednotlivých vah (Pircher, 2017 str. 15).

4.2.4 Prahy

Práh, nebo také často nazývaný „Bias“ je hodnota nacházející se uvnitř samotného neuronu,

která se stará o posunutí celého optimalizačního grafu. Zpočátku se jeho hodnota nastavuje na

hodnotu 1, na základě algoritmu dopředného šíření chyby se optimalizuje (Pircher, 2017 str.

15).

4.2.5 Dopředné šíření signálu

Abychom mohli Perceptron vůbec něco učit, musíme si nejdříve představit funkci, pomocí které

může Perceptron určit svůj výstup.

𝑦𝑦 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

+ 𝑏𝑏

Vidíme, že se jedná o poměrně jednoduchou rovnici. Abychom získali výstup Perceptronu

značený 𝑦𝑦 musíme vstupní hodnoty 𝑥𝑥 vynásobit jim náležící váhou 𝑤𝑤. Pokud má Perceptron

více než jeden vstup, tak se hodnoty vstupů vynásobených váhami sečtou. Provede se takzvaný

vážený součet a poté se pouze přičte hodnota prahu daného neuronu 𝑏𝑏 (Terhag, 2018 str. 18).

4.3 Delta pravidlo učení

4.3.1 Vysvětlení

Toto pravidlo se převážně využívá pro učení neuronů s výhradně lineární přenosovou funkcí.

Po úpravě se však dá využít i u neuronů s nelineární přenosovou funkcí.

Pravidlo lze zapsat následovně:

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 = 𝜀𝜀 ∗ 𝛿𝛿𝑖𝑖 ∗ 𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜)

A co tyto dvě rovnice znamenají?

Obrázek 5: Perceptron

Podívejme se na obrázek jednoduchého neuronu. Vidíme, že tento neuron má tři vstupní

hodnoty, které se značí jako 𝑥𝑥𝑘𝑘 (protože máme tři vstupy tak k = 1 až 3). Každý vstup má

přiřazenou váhu 𝑤𝑤𝑖𝑖𝑖𝑖, kde i značí daný neuron. Výstup neuronu je 𝑦𝑦𝑖𝑖. Zbývá nám 𝜀𝜀, přičemž se

jedná o takzvaný učící parametr, který určuje rychlost učení sítě.

Abychom mohli spočítat 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 musíme určit chybu neuronu, kterou dostaneme odečtením

skutečného výstupu (𝑦𝑦𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜)) od požadovaného výstupu (𝑦𝑦𝑖𝑖) podle druhé rovnice, tím nám

vyjde 𝛿𝛿𝑖𝑖. Poté dosadíme do první rovnice. Nové váhy spočítáme tak, že ke stávajícím přičteme

nově získané 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 (Ploner, a další, 2009 stránky 10,11).

4.3.2 Příklad

Abychom fungování lépe pochopili, podívejme se na konkrétní příklad.

Máme definované vstupy sítě (2 3 1) a chceme, aby výstup neuronu byl součet vstupů tedy

6. Váhy neuronu jsou zpravidla náhodně vygenerovány a jedná se většinou o čísla v intervalu

(-1 ; 1). V našem případě zvolíme váhy jako vektor (0.6 0.3 − 0.2).

Nejprve provedeme vážený součet pro získání výstupu neuronu. Abychom si ulehčili práci,

můžeme využít skalární součin vektorů, který se spočítá jako 𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 .

Vyjde nám hodnota 1.9. Abychom dostali chybu funkce odečteme skutečný výstup od

požadovaného výstupu tedy 𝛿𝛿𝑖𝑖 = 6 − 1.9 . Chyba je tedy 4.1.

Za učící parametr dosadíme číslo 0,01 (proč použijeme právě tuto hodnotu, si vysvětlíme až

v další kapitole). Teď už máme vše a stačí nám pouze dosadit do první rovnice.

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 = (0.01 ∗ 4.1) ∗ (2 3 1)

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 = (0.082 0.123 0.041)

Pro upravení vah přičteme nově získané 𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖 a přičteme jej k aktuálním vahám.

(𝑛𝑛𝑛𝑛𝑛𝑛) 𝑤𝑤𝑖𝑖𝑖𝑖 = (0.082 0.123 0.041) + (0.6 0.3 − 0.2)

(𝑛𝑛𝑛𝑛𝑛𝑛) 𝑤𝑤𝑖𝑖𝑖𝑖 = (0.682 0.423 − 0.159)

Abychom zjistili, zda je výpočet opravdu správný, můžeme opět vypočítat chybu neuronu

s novými váhami a porovnat jí s předchozí chybou (Ploner, a další, 2009). Nová chyba by měla

být menší než původní. A opravdu, nová chyba 3,526 je skutečně menší než původní hodnota

4,1. A takto bychom mohli pokračovat, dokud by nebyla chyba minimální.

4.4 Perceptron v praxi

Abychom si fungování Perceptronu ukázali i v praxi a s problémy skutečného světa, vybral

jsem dva, na kterých výše uvedený algoritmus vyzkoušíme. Oba problémy jsem zkoušel pomocí

webu https://neuronal-network.netlify.app/, který jsem vytvořil a jehož zdrojový kód bude

k dispozici.

4.4.1 Ukázka 1

 První problém bude lineárního charakteru. Půjde o to, aby byly vstupní hodnoty sečteny a poté

vynásobeny číslem dva. Protože chceme konkrétní výstup neuronu bez nechtěné úpravy,

potřebujeme k tomu přenosovou funkci, která může nabýt jakýchkoliv hodnot bez omezení.

Proto využijeme přenosovou funkci „Identity“ kde f(x) = x.

Jako vstupní hodnotu jsem zvolil vektor (1 3 4) tudíž výstup trénovacího vzorku bude číslo

16. A jako neznámý vstup jsem zvolil vektor (2 3 2). Ideálně by tedy výsledek měl být 14.

Učící parametr je standartně nastaven na 0.01 (proč tomu tak je si vysvětlíme později) a počet

opakování jsem nastavil na 10 000. Výsledkem bylo číslo 11.27 a to znamená, že byla odchylka

vůči skutečnému výsledku 19.5 %. Na první pohled se tato hodnota může jevit jako vysoká, ale

musíme také brát v úvahu, že obvykle mívají neuronové sítě ohromné množství vstupů a počet

opakování několik desítek milionů. Kvůli tomu jsou také často trénované na superpočítačích,

které díky obrovskému výpočetnímu výkonu zvládnou takovýto počet opakování za extrémně

krátkou dobu, na rozdíl od klasických počítačů či notebooků.

Abych vám ale dokázal, že Perceptron skutečně funguje a „nevyhazuje“ jen náhodná čísla,

použil jsem tři trénovací vzorky a zvolil 100 000 opakování. Použitá trénovací data byly vstupní

vektory (1 3 4), (2 6 5), (0 7 3) a výstupní vektor (16 26 20) . Tady byl již

výsledek 13.999… s odchylkou takřka 0 % o poznání přesnější. Vidíme tedy že po přidání

pouhých dvou trénovacích vzorků a zvýšení počtu opakování jsme dosáhli mnohem lepších

výsledků. Platí tedy, že s nárůstem počtu vzorků a počtem opakování roste i přesnost výsledku

perceptronu.

https://neuronal-network.netlify.app/

4.4.2 Ukázka 2

Jako druhý příklad jsem vybral známý problém „XOR“, který byl do jisté míry příčinou vzniku

vícevrstvých sítí. XOR nebo česky Exkluzivní disjunkce, je pravdivá právě tehdy, pokud přesně

jedna její část je pravdivá. Jinak je nepravdivá. Proč stojí právě tento problém za vznikem

vícevrstvých sítí jsme si již uváděli.

Tentokrát byly vstupy trénovacích vzorků vektory (0 0), (0 1), (1 0), (1 1) a výstupní

vzorky vektor (0 1 1 0).

Počet opakování jsem nastavil na 10 000 iterací. Po dosazení vektoru (1 1) vyšel výsledek

0.66 oproti reálnému výsledku 0, což znamená, že odchylka byla 66 %, a to je opravdu hodně.

Situace se nezměnila ani s navýšením počtu opakování na 1 000 000. Po dosazení toho samého

vektoru vyšla znovu odchylka 66 % (Kvůli náhodnému zvolení vah nebyla hodnota identická,

ale lišila se jen o pár tisícin, a to po zaokrouhlení vedlo ke stejnému výsledku).

Proč tomu ale tak je? Abychom si mohli na tuto otázku odpovědět, musíme se nejprve pozorněji

podívat ne tento konkrétní problém. Podívejme se tedy na XOR (Exkluzivní disjunkce) v grafu.

Obrázek 6: Problém XOR (Exkluzivní disjunkce)

V grafu můžeme vidět dvě skupiny, zelené puntíky jsou výstupy, kdy XOR vyšel 1 a naopak

červené puntíky jsou ty, co vyšly nula. Teď vám dám malý úkol. Zkuste se zamyslet a pokuste

se tyto dvě skupiny, tedy zelené a červené puntíky, od sebe oddělit přímkou. Správná odpověď

je, že přímkou je rozdělit nelze, a to znamená, že jsou lineárně neseparovatelné. Výstup této

ukázky tedy je, že jednoduchý perceptron nedokáže vyřešit příklady nelineárního charakteru.

Kdo by chtěl ještě další důkaz, ukážeme si tento problém ještě na soustavě rovnic. Z fungování

umělého neuronu popsaného výše, si lze odvodit následující rovnice.

𝑂𝑂𝑤𝑤1 + 𝑂𝑂𝑤𝑤2 = 0

1𝑤𝑤1 + 𝑂𝑂𝑤𝑤2 = 1

𝑂𝑂𝑤𝑤1 + 1𝑤𝑤2 = 1

1𝑤𝑤1 + 1𝑤𝑤2 = 0

Úkolem je najít 𝑤𝑤1 a 𝑤𝑤2 takové, aby vyhovovaly všem čtyřem rovnicím. Vyjde nám, že příklad

nemá řešení.

5 VÍCEVRSTVÁ NEURONOVÁ SÍT

V této kapitole si ukážeme vícevrstvé neuronové sítě a popíšeme si jejich stavbu. Řekneme si,

co vůbec stálo za jejich vznikem. Poté se zaměříme na již lehce složitější učící algoritmus zvaný

„Back propagation“ a na příkladu si ukážeme jeho fungování. Na závěr, tentokrát úspěšně,

vyřešíme druhý příklad z předchozí kapitoly. Vyřešíme tedy problém zvaný „XOR“.

5.1 Definice

Obrázek 7: Vícevrstvá neuronová síť

S příchodem Perceptronu roku 1958 nastal velký pokrok ve výzkumu neuronových sítí. Avšak

když kolem roku 1989 Minsky a Papert přišli na to, že Perceptron dokáže řešit jen lineárně

spravovatelné problémy, muselo přijít řešení. Vícevrstvá neuronová síť se skládá z libovolného

množství vrstev, které jsou tvořeny mnoha navzájem propojenými neurony, popsané již

v předchozí kapitole. Jednotlivé vrstvy rozdělujeme na vstupní, skryté a výstupní.

V případě, že má síť více než jednu skrytou vrstvu, jako na obrázku, nazývá se hluboká

neuronová síť (angl. Deep neuronal network).

Právě takováto síť dokáže úspěšně vyřešit například problém XOR (Exkluzivní disjunkce)

s kterým přišli Minsky a Papert. Celou síť si můžeme představit jako takový filtr, kde každá

vrstva hledá jiné vlastnosti (Pircher, 2017 stránky 17,18).

5.2 Dopředné šíření signálu vícevrstvé sítě

Signál dopředného šíření u vícevrstvé sítě je velice podobný tomu v jednovrstvé síti. Avšak

vypočítaný výstup jednoho neuronu nemusí automaticky být výstupem celé neuronové sítě, ale

může sloužit i jako vstup do dalšího neuronu. A to je také hlavní princip algoritmu dopředného

šíření vícevrstvé sítě. Když se podíváme na obrázek výše, zjistíme, že výstup jedné vrstvy slouží

jako vstup vrstvy druhé, a takto to pokračuje až k vrstvě výstupní.

5.3 Algoritmus zpětného šíření chyby (angl. Back propagation)

5.3.1 Definice

Back propagation je algoritmus minimalizující výslednou chybu neuronové sítě za pomoci

gradientního sestupu, jedná se tedy opět o „Supervised learning“ neboli učení s učitelem.

Gradientní sestup je algoritmus, pomocí kterého hledáme ideálně globální minimum neznámé

funkce.

Ale co to znamená? Pojďme si to ukázat na následujícím příkladu. Představte si horolezce, který

stojí na vrcholku hory, a to uprostřed sněhové bouře tak silné, že je sotva vidět na krok. Aby se

horolezec mohl dostat zpět domů do údolí, musí po malých krůčcích nahmatávat okolí a

postupovat směrem většího klesání. Velikost kroku horolezce je v případě gradientního sestupu

reprezentován takzvaným učícím parametrem (angl. Learning rate), který má vždy hodnotu

mezi nulou a jedničkou.

Pokud by byl definován nulou, znamenalo by to, že by se náš horolezec vůbec nepohyboval a

nejspíš by na hoře umrzl. S neuronovou sítí by to bylo stejné, hodnoty vah by byly s každou

iterací stále stejné, což znamená, že by se síť nic neučila. To si můžeme i velice snadno

matematicky dokázat díky delta učícímu pravidlu, popsanému již v předchozí kapitole, z

kterého do jisté míry bude vycházet i tento algoritmus.

Jak jsme již popisovali, je výsledek chyby sítě vynásobený vstupy poté učícím parametrem a

výsledná hodnota je pak přičtena k dosavadním hodnotám vah. Avšak kdyby byl parametr nula,

tak by se k hodnotám přičetla pouze nula, což znamená, že by se hodnoty vah nezměnily. Pokud

je ale naopak zvolen parametr moc velký, může se stát, že bude náš horolezec údolí

přeskakovat, ale nikdy se do něj nedostane. Také proto je správné zvolení hodnoty tohoto

učícího parametru velice důležité.

Výše jsem uváděl, že se snažíme najít ideálně globální minimum funkce. Dostat se k tomuto

minimu je však velice nepravděpodobné a ani se s tím nepočítá. Kdybychom si představili

náhodnou funkci v prostoru, zjistili bychom, že minimum je více, avšak to největší je jen jedno,

a to se nazývá minimum globální. Ostatní jsou minima lokální (Pircher, 2017 str. 27). Ale co

se stane, když uvízneme právě v takovémto lokálním minimu? Stane se to, že se nedostaneme

na nulovou chybu sítě, ale to nám vůbec nevadí. Kdybychom měli nulovou chybu, znamenalo

by to, že funkce dokáže vložené vzorky identifikovat s přesností sta procent. Ale jak by to bylo

s neznámými vzorky s podobnými rysy? Ty by rozpoznány nebyly, protože by síť měla nulovou

toleranci a identifikovala by jen data identická s vloženými vzorky. To by však bylo pro náš

typ problému, u kterého se počítá s určitou tolerancí neefektivní.

5.3.2 Příklad

Obrázek 8: Vícevrstvá neuronová síť (příklad)

Abychom mohli začít počítat konkrétní příklad, musíme si nejprve definovat tvar neuronové

sítě. V našem případě se jedná o tvar (2 2 2), to znamená tři vrstvy po dvou neuronech,

jedna vstupní, jedna skrytá a jedna výstupní.

Nejprve si určíme tréninkové vzorky. Vstupní vektor (0.5 0.3) musí mít právě dvě hodnoty,

protože počet neuronů vstupní vrstvy je dva. To samé nastane také u výstupů, jelikož má

výstupní vrstva také dva neurony budou i dva výstupy 𝑡𝑡1,2(0.1 0.3). Prahy mohou být buďto

přímo uvnitř neuronu, nebo mohou fungovat jako další vstup do každé vrstvy. To znamená, že

se v každé vrstvě navýší počet vstupů o jeden další. Přesně tak, jak je prezentováno v obrázku

výše.

Jako přenosovou funkci skryté vrstvy použijeme hyperbolický tangens, popsaný výše.

Přenosová funkce výstupní vrstvy bude funkce „Identity“ to znamená funkce f(x) = x. Váhy

máme, využijeme totiž ty z obrázku.

Když už máme všechny počáteční hodnoty, pustíme se nejprve do dopředného šíření signálů

podle rovnice popsané již dříve.

Dopředné šíření skryté vrstvy

𝑧𝑧_𝑖𝑖𝑖𝑖1 = (0.1 ∙ 1) + (−0.1 ∙ 0.5) + (−0.1 ∙ 0.3) = 0.02

𝑧𝑧_𝑖𝑖𝑖𝑖2 = (0.2 ∙ 1) + (0.3 ∙ 0.5) + (0.4 ∙ 0.3) = 0.47

𝑧𝑧1 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.02) = 0.02

𝑧𝑧2 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(0.47) = 0.43

Pomocí těchto rovnic máme vypočítané výstupy skryté vrstvy, které teď použijeme jako vstupní

hodnoty vrstvy výstupní.

Dopředné šíření výstupní vrstvy

𝑦𝑦_𝑖𝑖𝑖𝑖1 = (0.0 ∙ 1) + (−0.4 ∙ 0.02) + (0.1 ∙ 0.43) = 0.035

𝑦𝑦_𝑖𝑖𝑖𝑖2 = (0.3 ∙ 1) + (0.6 ∙ 0.02) + (−0.2 ∙ 0.43) = 0.226

𝑦𝑦1 = 0.035

𝑦𝑦2 = 0.226

Poté, co dostaneme výstupy celé neuronové sítě, jsme schopni vypočítat její chybu tím, že

výsledek odečteme od námi na začátku definovaného výstupu.

Chyba neuronové sítě

𝑒𝑒1 = 0.1 − 0.035 = 0.065

𝑒𝑒2 = 0.3 − 0.226 = 0.074

Výpočet hodnot delta neuronů výstupní vrstvy

Pomocí chyby můžeme vypočítat hodnotu 𝛿𝛿 výstupních neuronů.

𝛿𝛿𝑘𝑘 = 2 ⋅ (𝑡𝑡𝑘𝑘 − 𝑦𝑦𝑘𝑘) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖𝑘𝑘)

A teď nám stačí dosadit do rovnice. Také víme, že derivací funkce f(x) = x je hodnota 1.

Můžeme ji taktéž rovnou dosadit a vyjdou nám dvě hodnoty.

𝛿𝛿1 = 2 ⋅ (𝑡𝑡1 − 𝑦𝑦1) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖1) = 2𝑒𝑒1 ∙ 1 = 0.13

𝛿𝛿2 = 2 ⋅ (𝑡𝑡1 − 𝑦𝑦2) 𝜑𝜑´(𝑦𝑦_𝑖𝑖𝑖𝑖2) = 2𝑒𝑒2 ∙ 1 = 0.148

Výpočet hodnot delta neuronů skryté vrstvy

δj = �δk wjk φ´ (z_inj
k=1

)

Ano, tato rovnice možná vypadá trošku strašidelně, ale jakmile si ji vysvětlíme a vypočítáme,

zjistíme, že to tak hrozné není. wjk jsou váhy mezi skrytou a výstupní vrstvou, δk jsou hodnoty

delta výstupních neuronů, které jsme počítali v minulém kroku a φ´ (z_inj) je derivací

hyperbolického tangentu a to je 1 − (𝑧𝑧)2.

𝛿𝛿1 = (0.13 ∙ (−0.4) + 0.148 ∙ 0.6) 𝜑𝜑´(𝑧𝑧_𝑖𝑖𝑖𝑖1) = 0.0368 ∙ (1 − (0.02)2) = 0.03679

𝛿𝛿2 = (0.13 ∙ 0.1 + 0.148 ∙ (−0.2)) 𝜑𝜑´(𝑧𝑧_𝑖𝑖𝑖𝑖2) = −0.0166 ∙ (1 − (0.43)2) = −0.01353

Aktualizace vah výstupní vrstvy

Když už máme téměř vše spočítané, stačí nám provést aktualizaci vah podle vzorců, které jsme

si vysvětlovali již v předchozí kapitole.

𝛥𝛥𝑤𝑤𝑗𝑗𝑗𝑗 = 𝜀𝜀 ∗ 𝛿𝛿𝑘𝑘 ∗ 𝑧𝑧𝑗𝑗

Tabulka 1

NEURON 1 NEURON 2

𝛥𝛥𝑤𝑤01 = 𝜀𝜀 ∙ 0.13 ∙ 1 = 0.13 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤02 = 𝜀𝜀 ∙ 0.148 ∙ 1 = 0.148 ∙ 𝜀𝜀

𝛥𝛥𝑤𝑤11 = 𝜀𝜀 ∙ 0.13 ∙ 0.02 = 0.0026 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤12 = 𝜀𝜀 ∙ 0.148 ∙ 0.02 = 0.00296 ∙ 𝜀𝜀

𝛥𝛥𝑤𝑤21 = 𝜀𝜀 ∙ 0.13 ∙ 0.43 = 0.0559 ∙ 𝜀𝜀 𝛥𝛥𝑤𝑤22 = 𝜀𝜀 ∙ 0.148 ∙ 0.43 = 0.06364 ∙ 𝜀𝜀

Za učící parametr 𝜀𝜀 si dosadím 0.01 a podle rovnice 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑤𝑤𝑗𝑗𝑗𝑗 + 𝛥𝛥𝑤𝑤𝑗𝑗𝑗𝑗 aktualizujeme váhy.

Tabulka 2

NEURON 1 NEURON 2

𝑤𝑤01 = 0.013 𝑤𝑤02 = 0.3148

𝑤𝑤11 = −0.39974 𝑤𝑤12 = 0.600296

𝑤𝑤21 = 0.10559 𝑤𝑤22 = −0.193636

Aktualizace vah skryté vrstvy

Ten samý postup použijeme i pro aktualizaci vah skryté vrstvy.

𝛥𝛥𝑣𝑣𝑖𝑖𝑖𝑖 = 𝜀𝜀 ∗ 𝛿𝛿𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖

Tabulka 3

NEURON 1 NEURON 2

𝛥𝛥𝑣𝑣01 = 𝜀𝜀 ∙ 0.03679 ∙ 1 = 0.03679 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣02 = 𝜀𝜀 ∙ (−0.01353) ∙ 1 = −0.01335 ∙ 𝜀𝜀

𝛥𝛥𝑣𝑣11 = 𝜀𝜀 ∙ 0.03679 ∙ 0.5 = 0.0184 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣12 = 𝜀𝜀 ∙ (−0.01353) ∙ 0.5 = −0.006765 ∙ 𝜀𝜀

𝛥𝛥𝑣𝑣21 = 𝜀𝜀 ∙ 0.03679 ∙ 0.3 = 0.011 ∙ 𝜀𝜀 𝛥𝛥𝑣𝑣22 = 𝜀𝜀 ∙ (−0.01353) ∙ 0.3 = −0.00406 ∙ 𝜀𝜀

Za učící parametr 𝜀𝜀 si opět dosadím 0.01 a podle rovnice 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑖𝑖 + 𝛥𝛥𝑣𝑣𝑖𝑖𝑖𝑖 aktualizujeme

váhy.

Tabulka 4

NEURON 1 NEURON 2

𝑣𝑣01 = 0.103679 𝑣𝑣02 = 0.18665

𝑣𝑣11 = −0.09816 𝑣𝑣12 = 0.2993235

𝑣𝑣21 = −0.0989 𝑣𝑣22 = 0.399594

A takto by vypadala jedna iterace této neuronové sítě (Dolezel, 2020). Abychom však dokázali,

že se výsledná chyba opravdu zmenšuje, provedl jsem znovu výpočet dopředného šíření,

tentokrát však s aktualizovanými váhami. Chyby 𝑒𝑒1 a 𝑒𝑒2 mi skutečně vyšly menší.

 A to jsem chtěl dokázat. Chyba se opravdu zmenšila a kdybychom tento postup opakovali

vícekrát, chyba by se ještě zmenšila.

𝑒𝑒1 = 0.064

𝑒𝑒2 = 0.021

5.4 Vícevrstvá neuronová síť v praxi

V předchozí kapitole o perceptronu jsme si ukázali jeho funkci a zároveň jeho možnosti využití.

V druhém příkladu jsme zjistili, že je jeho využití značně omezeno a že si nedokáže poradit

s nelineárním problémem XOR. Z tohoto důvodu si tento příklad zopakujeme a použijeme

přitom vícevrstvou síť, jejíž fungování jsme si vysvětlili výše. Pro výpočet tohoto příkladu jsem

použil programovací jazy Python, jehož výhodou byla knihovna zvaná „Numpy“, která mi

pomohla s maticemi.

Abychom mohli pokračovat, musíme si opět nejdříve definovat tvar sítě. Pro zjednodušení jsem

použil ten nejjednodušší možný, to znamená jedna vstupní vrstva, jedna skrytá vrstva a vrstva

výstupní.

Jako vstupy trénovacích vzorků jsem použil vektory (0 0), (0 1), (1 0), (1 1) a

výstupní vzorky vektor (0 1 1 0). V podstatě stejné trénovací vzorky, jako v předchozí

kapitole. Jako přenosovou funkci jsem zvolil hyperbolický tangens. Proč, to si ukážeme později.

Počet opakování byl tentokrát 10 000. Po dosazení vektoru (0 1) mi výsledek vyšel 0.999, to

znamená odchylka 0.1 %, což je velice blízko ideální hodnotě.

Nyní se podíváme na graf, který nám ukáže, jak moc odchylka (angl. Loss) klesala v závislosti

na počtu opakování (angl. Epochs).

Obrázek 9: Graf klesající chyby (Tanh)

Můžeme vidět, že od 2 000 opakování se odchylka takřka nezměnila a to znamená, že jsme

mohli teoreticky celý proces učení zastavit u 2 000 opakování. Proč jsem to neudělal má ale

důvod, a to ten, že bych Vám chtěl ukázat rozdíl ve zvolení správné přenosové funkce. Když

se teď podíváme na stejný graf jen s tím rozdílem, že byla použita přenosová funkce sigmoid a

ne hyperbolický tangens, zjistíme, že byl celý učící proces značně pomalejší a výsledek 0.905

byl také o poznání méně přesný.

Obrázek 10: Graf klesající chyby (Sigmoid)

Abychom si udělali představu, jak moc by bylo použití funkce sigmoid pomalejší, provedl jsem

srovnání. Pro dosažení stejné míry přesnosti, v našem případě s odchylkou 0.01, potřebujeme

u sítě s použitou funkcí sigmoid provést 10 074 opakování, kdežto s funkcí hyperbolický

tangens pouze 527.

Vidíme tedy, že zvolení vhodné přenosové funkce se značně odráží na celkové efektivitě celé

sítě.

6 ZÁVĚR

Cílem této práce bylo vytvořit funkční model neuronové sítě a prezentovat její funkčnost na

příkladu. Tento cíl jsem splnil a sítě jsem vytvořil dvě. Jednu, na které jsem ukázal funkčnost

jednovrstvé neuronové sítě, zároveň jsem odhalil i její nedostatky. A síť druhou, která právě

nedostatky jednovrstvé sítě dokázala vyřešit. Jako příklad jsem použil problém XOR, který je

známý tím, že ho nelze lineárně vyřešit. Abych se ale vůbec dostal k řešení tohoto problému,

musel jsem nejprve vysvětlit fungování umělé neuronové sítě a všechny náležitosti k tomu

patřící. Jelikož jsem nenašel dost užitečných zdrojů na téma umělých neuronových sítí

v českém jazyce, musel jsem dohledat cizojazyčné zdroje. Šlo především o odborné

vysokoškolské práce. A protože velká část výzkumů umělé inteligence probíhá v Německu, je

i většina mých zdrojů v německém jazyce. Spolu s matematickým fungováním neuronové sítě

jsem se zlehka podíval i do její historie, která, jak jsem zjistil, je mnohem delší, než jsem

předpokládal. Další, pro mě náročný úkol, bylo neuronovou síť naprogramovat a na příkladu

také otestovat.

Dle mého názoru jsem vytyčené cíle mé práce splnil, avšak musím přiznat, že celková náročnost

tohoto tématu byla nad má očekávání. I přesto si ale myslím, že jsem do tématu do jisté míry

pronikl a byl bych schopen s ním nadále pracovat. Největší překážkou bylo pro mne pochopit

algoritmus zpětného šíření chyby, kde byla použita vyšší matematika, mně předtím neznámá.

Nakonec jsem to však zvládl a mohl jsem dopsat i tuto kapitolu mé práce.

 Řekl bych, že pro mě byla tato práce přínosem a jistě jím bude i pro každého, kdo si jí přečte.

Jedná se o velice aktuální téma s velkým potencionálem, je tedy přínosné se mu podrobněji

věnovat.

7 BIBLIOGRAFIE

Borzymowski, Henryk. 2019. Automatische Textgenerierung für finanzielle Berichte.

Mnichov, Německo : Ludwig Maximilians Universität, 20. Leden 2019.

Dolezel, Petr. 2020. INUI2, NNUI2 - Přednáška (Dopředná vícevrstvá umělá neuronová síť).

YouTube. [Online] 23. Březen 2020.

https://www.youtube.com/watch?v=67yfzNWs4nA&t=1474s.

Ebert, David. 2019. Bildklassifizierung mit Neuronalen Netzen. Vitzenburg, Německo :

Hochschule Merseburg, 1. Duben 2019.

Farkaš, Matin. 2019. Realizace neuronové sítě s využitím grafických procesorů. Plzeň :

Západočeská univerzita, 2019.

Pircher, Thomas. 2017. místo neznámé : Hochschule Mittweida, 28. září 2017.

Ploner, Patrick Werner a Klaukien, Moritz. 2009. Neuronale Netze. Innsbruck, Německo :

Universität Innsbruck, 14. Květen 2009.

Terhag, Felix. 2018. Reinforcement Learning zur Erstellung. Köln, Německo : Universität zu

Köln, 3. Prosinec 2018.

Volná, Eva. 2002. Neuronové sítě. Ostrava, Česká republika : Ostravská univerzita, 2002.

8 SEZNAM OBRÁZKŮ A TABULEK

Obrázek 1: Graf skokové funkce .. 15

Obrázek 2: Graf sigmoidní funkce ... 16

Obrázek 3: Graf funkce ReLU ... 17

Obrázek 4: Graf funkce hyperbolický tangens ... 18

Obrázek 5: Perceptron .. 22

Obrázek 6: Problém XOR (Exkluzivní disjunkce) ... 26

Obrázek 7: Vícevrstvá neuronová síť ... 28

Obrázek 8: Vícevrstvá neuronová síť (příklad) .. 31

Obrázek 9: Graf klesající chyby (Tanh) ... 37

Obrázek 10: Graf klesající chyby (Sigmoid) .. 38

Tabulka 1 .. 34

Tabulka 2 .. 34

Tabulka 3 .. 35

Tabulka 4 .. 35

9 PŘÍLOHY

Součástí této práce bylo také vytvoření programu. Oba programy najdete na přiloženém usb

flash disku, v případě elektronické verze této práce, ve složce programy.

	1 Úvod
	2 Úvod do neuronových sítí
	2.1 Definice
	2.2 Využití
	2.3 Historie neuronových sítí

	3 Přenosová funkce
	3.1 Definice
	3.2 Nejpoužívanější přenosové funkce
	3.2.1 Skoková funkce
	3.2.2 Sigmoidní funkce
	3.2.3 ReLU funkce
	3.2.4 Hyperbolický tangens

	4 Jednovrstvá neuronová síť (Perceptrton)
	4.1 Definice
	4.2 Stavba Perceptronu
	4.2.1 Vstupy
	4.2.2 Váhy
	4.2.3 Výstupy
	4.2.4 Prahy
	4.2.5 Dopředné šíření signálu

	4.3 Delta pravidlo učení
	4.3.1 Vysvětlení
	4.3.2 Příklad

	4.4 Perceptron v praxi
	4.4.1 Ukázka 1
	4.4.2 Ukázka 2

	5 Vícevrstvá neuronová sít
	5.1 Definice
	5.2 Dopředné šíření signálu vícevrstvé sítě
	5.3 Algoritmus zpětného šíření chyby (angl. Back propagation)
	5.3.1 Definice
	5.3.2 Příklad

	5.4 Vícevrstvá neuronová síť v praxi

	6 Závěr
	7 Bibliografie
	8 Seznam obrázků a tabulek
	9 Přílohy

