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Anotace

Ve své praci jsem se zabyval neuronovymi sitémi a jejich matematickym principtim. Cilem mé
prace bylo vysvétlit fungovani neuronovych siti a zaroven vytvoiit model, jehoz funkénost bych
ukézal na konkrétnim ptikladu. K vytvofeni takového modelu jsem pouZil programovaci jazyk
Python, ktery je pro tuto praci z mnoha diivodi vyhodnou volbou. V programu byla pouZzita

knihovna zvana ,,Numpy*, ktera vyrazn¢ ulehcila praci s maticemi a vektory.
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In my work, I dealt with neural networks and their mathematical functioning. The goal of my
work was to explain the functioning of neural networks and create a functional model, which
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programming language, which is a convenient option for this work, for many reasons. A library
called "Numpy" was used in the program, which greatly facilitated the work with matrices and

vectors.
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1 Uvop

V této praci jsem se zaméfil na umélé neuronové sité. A o co se vlastné jedna? Umélé neuronové
sit¢ jsou matematickym modelem biologickych neuronovych siti vyuzivanych na§im mozkem.
Ted’ ve zkratce vime, o co se jednd, ale k cemu viibec slouZi? Umélé neuronové sité nam davaji
moznost fesit 1 nelinearni problémy, které by klasicky program nevyteSil. To znamena, Ze
kdybychom si v pfipadé nelinearniho problému vstupni vzorky vyjadiili v grafu, zjistili
bychom, Ze by je nebylo mozné rozd¢lit pomoci piimky. Kdybychom se podivali na nas svét,
zjistime Ze maloktery problém je line4rni. To Ze by ho klasicky program nedokazal vyftesit neni
upln€ presné, bylo by to ale velice ndrocné, protoze bychom vSechny souvislosti, které se
neuronova sit’ nauci sama, museli ru¢n¢ vypsat. A to je ta prulomova myslenka. Neni tedy lepsi,

abychom program naucili fungovat, aniz bychom museli vlastnosti ru¢né vypisovat?

A pravée tato myslenka, vytvofit umélé védomi, provazi lidstvo jiz velice dlouho. Vysledkem
tohoto hledani jsou, jiz vySe zminéné, umélé neuronové sité, které jsou podstatou defacto kazdé
um¢lé inteligence dnesni doby. Na rozdil od lidského mozku, ktery ma kolem sto miliard
neurond, dokdzeme zatim vytvofit sit¢ s miliony neuronti. Proto bych fekl, ze k vytvoteni
skute¢ného funkéniho védomi nds cekd jesté velmi dlouha cesta. To ale v zddném piipade
neznamena, ze nam jsou umélé neuronové sité k ni¢emu, ba naopak. Dnes zazivaji obrovsky
rozmach a jsou hojné vyuzivany. Naptiklad u autonomniho fizeni vozidel, jako tfeba prototypy
firmy Tesla, nebo u autopilota v letadlech. Pouzivaji se také u programiti pro rozpoznavani
oblicej, jako tfeba takzvané ,,FacelD* znacky Apple, nebo ,,Windows Hello* znacky Microsoft.
Hlavni pfednosti neuronovych siti je jejich univerzalni vyuziti, at’ uz v tézkém pramyslu, nebo
tteba v medicin€ a v mnohych dalSich oborech. Zkratka, jejich moznosti jsou obrovské a daji
se implementovat téméei vSude. A to je také duavod, pro¢ je aktudlné uméléd inteligence tak

popularni.

Mym hlavnim cilem bylo osvétlit toto téma i1 tém, co nedisponuji odbornymi znalostmi
v oboru. Musim také dodat, ze ac se jedna o stale diskutovanégjsi téma, je opravdu t€zké najit
relevantni zdroje v ¢eském jazyce, které by ale zaroven byly pochopitelné také pro clovéka bez
odbornych znalosti. Myslim si, Ze pochopit neuronové sité je pro nas velice diilezité a ¢im vice

lidi se tomuto tématu bude vénovat, tim bude, dle mého ndzoru, rychlejsi pokrok.



Zaroven bych tekl, Ze je to velikym ldkadlem, zvlast’ pro mladou generaci, protoZe nedostatek
odbornikll a zdroven zvysujici se poptavka je dobrou pfilezitosti naskocit do tohoto oboru.
Z mého pohledu bude uméla inteligence ve svété hrat ¢im dal tim veétsi roli. Musim vSak dodat,
ze bez zakladnich znalosti matematiky se u ¢teni této prace neobejdete. PreCteni této prace
doporucuji kazdému nadsenci do umélé inteligence, ktery by chtél také zlehka porozuméti

jejimu fungovani.



2 UvOD DO NEURONOVYCH SiTi

V této kapitole si nejprve vysvétlime, co to umelé neuronové sité jsou a jak jsou inspirovany
fungovanim lidského mozku. Poté se podivame, kde a jak se tyto sité v dnesSni dob& vyuzivaji.
A nakonec zlehka zavitdme také do historie a predstavime si naptiklad prvni funkéni model

umélého neuronu.

2.1 Definice

Uméléa neuronova sit’ je systém, ktery zpracovava informace, skladajici se z mnozstvi jednotek
(neuronil), které si na zaklad¢ daného propojeni posilaji informace ve formé aktivace, ¢i naopak
»deaktivace” jednotlivych neuront. Do jist¢ miry jsou tato propojeni odrazem struktury
biologického mozku. Aby se neuronové sit¢ mohly ucit, pottebuji ucici algoritmy, kterych
existuje velké mnozstvi. Velkou vyhodou je univerzalnost vyuziti. Takovéto sit€ umoziuji fesit
problémy v riznych oblastech statistiky, technologie nebo ekonomie. ProtoZe neuronovou sit’
aplikujeme na konkrétni problém, nedokéze se, na rozdil od naseho mozku, zaméfit i na feSeni

dalsich problémi (Ebert, 2019 str. 6).

2.2 Vyuziti

AC se to na prvni pohled nezda, setkavame se s nimi témei denné a to napiiklad, kdyz hledame

obrazky pomoci internetového prohlizece Google.

Mozné vyuziti neuronovych siti stale roste, a to hlavné diky neustale zvySujicimu se vykonu
pocitaci, diky kterému se potiebna doba pro trénovani téchto siti znaéné zkracuje. Dal§Sim
davodem je také fakt, Ze se databaze vzorkl zvétsuji a vétsi mnozstvi vzorkli ma za nasledek

zvyseni presnosti sité.

Je neuve¢titelné, ale zaroven také désivé, co vSechno se za par let dokazaly naucit. Umélé
neuronové sit¢ najednou umi i to, co diive zvladl jen ¢loveék jako naptiklad skladat pisné, hrat
Sachy nebo i1 psat basné. Relativné novy program zvany ,,GPT-3% od neziskové spole¢nosti

OpenAl dokaze dokonce psat programy vlastni, nebo vést konverzaci.



Musim pfiznat, Ze ani j& jsem zprvu nedokdzal rozeznat basenl vytvofenou programem a baseni
vytvofenou Clovékem. AZ po dikladném procteni bylo znat, Ze ta basen napsand programem

postradala hlubsi vyznam.

Neuronové sit¢ vyuziva také velké mnozstvi aplikaci i her, jako naptiklad znama funkce
»Windows Hello“, kterd diky ulozeni snimku VaSeho obliceje dokaZe pozdé&ji pti prihlaSeni
urcit, zda se jedna o Vas, ¢i nikoliv. Nespornou vyhodou je pfipustna odchylka. To znamena,

ze se nemusi jednat o 100% totozny snimek, ale sta¢i dostatek spoleénych vlastnosti.

Umélé neuronové sité vSak dokazou zachranit i zivot. V medicinské sféfe se testuji programy
pro poznavani zhoubnych nadorti podle obrazkii. Na zdkladé mnoha testli 1ze tvrdit, Ze maji
lepsi vysledky nez ¢lovek. Velkou vyhodou je také fakt, Ze diagnézu provede program takika
okamzit¢ a bez potieby experta v oboru. A pravé véasna diagndéza miize pacientim mnohdy

zachranit Zivot.

2.3 Historie neuronovych siti

Historie neuronovych siti sahd od roku 1943 az do soucasnosti. Pielomovymi objevy byly
Perceptron na konci 50. let a algoritmus zpétného Sifeni chyby (angl. Back-Propagation), v
poloviné 70. let. Mezi tim byla takzvana zima, ve které byla zpochybnéna uzite¢nost a
proveditelnost neuronovych siti. Hlavni ptekdzkou byl v t¢ dobé nedostatek vykonného
hardwaru. Lidsky mozek je studovan jiz né€kolik tisic let. Prvni krok k umélym neuronovym
sitim byl v§ak u¢inén az v roce 1943, kdy neurofyziolog Warren McCulloch a mlady matematik
Walter Pitts napsali ¢lanek o tom, jak neurony vibec funguji. Vytvofili pomoci elektrickych

obvodi jednoduchy neuron, ktery mél vice vstupnich signalti a pouze jeden vystup.

V roce 1949 opét oteviel koncept neurontt Donald Hebb, kdyZ ve své knize ,,The Organization
of Behaviour* poukazal na to, Ze ,,pokud biologicky neuron aktivuje jiny neuron, tak spojeni
mezi nimi zesili. To znamen4, Ze vaha mezi dvéma neurony se zveétsi pokazdé, kdyz maji stejny
vystup. Pokud se dva neurony aktivuji ve stejny Cas, je posileno jejich spojeni* (Farkas, 2019
str. 3). S pfibyvajicim vykonem tehdejSiho hardwaru bylo nakonec v roce 1950 mozné
nasimulovat hypotetickou neuronovou sit. Poprvé se o to pokusil védec z IBM Nathanial

Rochester. Bohuzel vsak jeho pokus skon¢il netispéchem.



V roce 1957 vynalezl Frank Rosenblatt Perceptron. Jednalo se v podstaté o McCullochliv a
Pittsiv model, ale spfidanym algoritmem uceni, ktery jiz dokazal rozdélit linearné
separovatelna data. Jiz v roce 1958 Frank Rosenblatt vyuzil svljj algoritmus Perceptronu pro
vyvoj prvniho neuropocitate ,,Mark 1 Perceptron® v laboratoii ,,Cornell Aeronautical
Laboratory*. Za pomoci senzoru o velikosti, 20krat 20 pixelli dokazal rozpoznat jednoduché
Cislice (Ebert, 2019 str. 9). V roce 1960 Bernhard Vitro a Marcia Hoff, ze Stanfordské
Univerzity, vyvinuli modely, které nazvali "Adeline" a "Madaline". Adeline byl vyvinut tak,
aby rozpoznal binarni obrazce, takze pokud Cetl bity z telefonni linky, mohl predpoveédét dalsi
bity. Madaline byla prvni neuronové sit’ aplikovana na problém redlného svéta za pomoci
adaptivniho filtru, ktery eliminuje ozvény na telefonnich linkdch. Pfestoze je tento systém
velice stary, je stale komer¢né vyuzivan (Volna, 2002). Tento model vyuzival uéici pravidlo

Delta, které si popiSeme pozdéji (Ebert, 2019 str. 9).

,»V roce 1969 Marvin Minsky a Seymour Papert ve své knize Perceptrons ukdzali n€kolik
fesit trividlni nelinearni problém typu XOR (Exkluzivni disjunkce). Tento poznatek vedl k

velkému poklesu zdjmu o umélé neuronové sité vétsSiny védcu* (Farkas, 2019 str. 4).

V 80. letech ptichdazi Kunihiko s konvolu¢nimi neuronovymi sitémi obsahujici vice

neuronovych vrstev a svym modelem nazvanym ,,Neocognitron* (Ebert, 2019 str. 9).

Na zacatku 90. let nastava velky rozmach, a napiiklad i zndma americkd agentura DARPA
zacala aktivné podporovat vyzkum neuronovych siti, zanedlouho nasledovaly i jiné organizace
(Volna, 2002). V roce 1986 ptichazi algoritmus zpétného Sifeni chyby, t¢Z Back-Propagation
pro vicevrstvé neuronové sité (Volnd, 2002). Problém Perceptronu, ktery nedokazal vytesit
nelinearni problémy, se vSak podaftilo vyftesit roku 1989, kdy tym New Yorské univerzity jiz
znamy algoritmus Back-Propagation aplikoval na konvolu¢ni sité. Model této neuronové sité
pojmenovany ,,.LeNet* byl poté uspéSné otestovan na datech tvotici ru¢né psané Cislice. Tento
model byl od roku 1990 ve Spojenych statech vyuZivana pro automatické rozpoznani
postovniho smérovaciho ¢isla. V roce 2011 byl algoritmus tohoto modelu upraven tak, aby
mohl fungovat za pomoci grafické karty, coz nékolikandsobné zrychlilo proces trénovani a

oteviely se moznosti s daleko vétSim mnozstvim trénovacich dat.



Umeélé neuronové sité fungujici pravé na tomto principu, byly také prvni, které dokazaly predcit

clovéka v rozpoznani obrazcii (Ebert, 2019 str. 10).

Tim to vsSak nekon¢i. Také dnes prichazeji védci stale sriznymi modifikacemi téchto
zékladnich algoritmti, které dosahuji ¢im dal lepSich vysledkl. Dal§imu vyzkumu nahrava také
fakt, Ze je dnes uméld inteligence vyuzivdna témet vSude a mozné vyuziti stale roste. Dalsi
nespornou vyhodou je také prudce stoupajici vykon dnesnich pocitacll, ¢imz se otviraji dvete

komplexné&j$im neuronovym sitim s véts§im mnozstvim trénovacich dat.



3 PRENOSOVA FUNKCE

V této kapitole se podivame jiz na konkrétni funkei, ktera je podstatna pro fungovani neuronové
sit¢ tim, Ze se na zakladé ni méni hodnota vystupu jednotlivych neuront sité¢. Vysvétlime si,
pro¢ je prenosova funkce potieba a jak vlastné funguje. Také si podrobné predstavime ty
nejznaméjsi a dnes nejpouzivangjsi. Ukazeme si jejich vyhody a nevyhody a rozdil mezi

pouzitim funkce linedrni ¢i nelineérni.
3.1 Definice

Ptenosova, nebo také aktivacni funkce neuronu, definuje jeho vystup na zakladé sady vstupti.
Nejprve se tedy provede soucet vstupli vynasobenych vahami, neboli vazeny soucet. Funkce
pak provede urcity typ operace, kterd zavisi na nami vybrané pfenosové funkci, aby
transformovala soucet na ¢islo mezi libovolnou dolni hranici a libovolnou horni hranici.
Ptenosova funkce je vlastné inspirovdna aktivitou v naSem mozku, ve kterém jsou neurony
aktivovany riznymi podnéty. Vysvétleme si to na nasledujicim piikladu. Pokud ucitite néco
ptijemného, tak ur¢ité neurony v mozku na zakladé podnétti vyslou signal, ¢imz se aktivuji, jiné
naopak signal nevyslou a zlstanou v inaktivnim stavu. To muze byt také reprezentovano
binarné€, coz znamena nulou pro neaktivaci a jednickou pro aktivaci neuronu (Borzymowski,

2019 str. 22). Ale jsou tyto funkce vlibec potieba a neslo by to 1 bez nich?

Odpovéd’ na tuto otazku neni uplné jednozna¢nd. Mohu mit neuron bez ptenosové funkce.
Takovy neuron by tedy vyuzil linearni funkci f(x) = x. Problém vsak je ten, ze by takovy model
mohl fesit jen Cisté linearni problémy, pro které by ale takova neuronova sit’ nebyla viibec
potieba a rychleji by se vytesily klasickou formou. Zajimavéjsi to vSak bude v piipadé¢ feSeni
nelinearniho problému jako tfeba u klasifikace ¢i regrese. Predstavme si néasledujici problém.
Potfebujeme od sebe rozlisit nasledujici vzorky: obrazky lidi a obrazky zvirat. Kdybychom si
vzorky zvifat i lidi definovali jako body grafu, zjistili bychom, ze by se pomoci néjaké
nelinedrni funkce dali rozdélit do dvou tfid, a to je ptesné to, o co nam jde. Pokud bychom ale
prenosovou funkci nepouzili, museli bychom vzorky rozdélit pomoci ptimky, coz by v nasem

ptipadé nebylo mozné.



3.2 Nejpouzivanéjsi prenosové funkce

3.2.1 Skokova funkce

skokova funkce

fix)

-

Obrazek 1: Graf skokové funkce

Toto je viibec nejstarsi prenosova funkce, kterd byla vyuzivéana jiz McCullochovim modelem
neuronu. Jedna se o jednoduchou bindrni funkci. To znamena, ze vystup je bud’ hodnota nula,
nebo jedna. Tedy pokud je vstupni hodnota zaporné Cislo, bude vystup této funkce ¢islo nula,

kdezto kdyz bude vstupni hodnota kladna nebo nula, bude vystup funkce ¢islo jedna.

Velky problém této ptenosové funkce vSak nastava pii klasifikaci vstuptl, kde se zjistuje, jaké
tfid¢ vzorek nalezi na zakladé libovolnych spole¢nych rysi. Funkce by tedy mohla hodnotu
jedna pfifadit pouze jedné tfide a zbytek tiid by musel mit hodnotu nula. Pii takové klasifikaci
je vSak vysokd pravdépodobnost, ze se aktivuje vice neuronti, coZ by znamenalo, ze by
neuronova sit’ musela vzorek pfifadit vice tfiddm soucasné. A to je také ditvod pro€ se tato

prenosova funkce jiz moc nevyuziva (Borzymowski, 2019 str. 22).



3.2.2 Sigmoidni funkce

funkce sigmoid
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Obrazek 2: Graf sigmoidni funkce
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Podivejme se ted’ na ptenosovou funkci zvanou ,,Sigmoid®. Jednd se o standartni logistickou
ktivku. Funkce pfijiméa vstup a pokud mé vstup velmi negativni hodnotu, bude vystup této
funkce cislo velmi blizké nule. Naopak pokud je hodnota vstupu velmi kladna, bude vystup
funkce ¢islo blizké jedné. Funkce sigmoid ma tedy dolni hranici hodnotu nula a horni hranici
hodnotu jedna. Jeden z problémi této prenosové funkce je vSak ten, Ze ¢im vyssi maji vstupy
absolutni hodnoty, tim vice se stdvaji nerozlisitelné, neboli rozdil mezi nimi se stdva velmi
malym. Kdyby tento problém nastal, znamenalo by to, ze by se sit’ i po dlouhé dobé¢ trénovani

prakticky nic nenaucila (Ebert, 2019 str. 15).



3.2.3 ReLU funkce

RelU funkce

f(x)

Obrazek 3: Graf funkce ReLU
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Tato prenosova funkce (angl. Rectified Linear Unit) je jedna znejpouzivanéjSich
v klasifikac¢nich problémech dnesni doby, a to hlavné diky jejimu nendroénému vypoctu ale 1
presto dobrym vlastnostem. Kdyz se podivame na graf vyse, zjistime, Ze se jednd o pomérné
jednoduchou funkci. Vidime, ze pokud je hodnota vstupu mensi nez nula, je vystup pienosové
funkce nula, avSak pokud je vstup vétSi nebo roven nule, svoji hodnotu si zachova a vystup
funkce bude stejny jako jeji vstup neboli f (x) = x. Jedna z nevyhod je, Ze ve funkci neni rozdil
mezi zapornym Cislem a nulou, coz miize vést k problémim. A proto existuje vice modifikaci
této funkce jako naptiklad takzvany ,,.Leaky ReLU* kde je f(x) v zdpornych hodnotach rovna
p*x (p je parametr za ktery dosadime ¢islo v zavislosti na chténém sklonu funkce). Protoze si
zde ale pfedstavujeme jen zdkladni pfenosové funkce, nebudeme se této modifikaci dale

vénovat. Je vSak dobré védét ze existuje.



Narozdil od sigmoidni funkce, kterd ma jako vystup vzdy néjakou hodnotu mezi nulou a
jednic¢kou, nardzime u pienosové funkce ,,ReLU* na problém, zZe se kviili moznému nulovému
vystupu mizou neékteré neurony stat neaktivnimi, a to i po celou dobu trénovaciho procesu,
¢imz je zna¢né€ narusena efektivita celé neuronové sité. Toto miizeme ale vidét 1 jako vyhodu,
protoZze tim, Ze se neurony stanou neaktivnimi, se znacné zjednodusi vypocet, a tudiz se zkrati

1 potfebna doba pro trénovani sit¢ (Ebert, 2019 str. 17).

3.2.4 Hyperbolicky tangens

Hyperbolicky tangens

tanh (x)
o

Obrazek 4. Graf funkce hyperbolicky tangens

Fo)tanh(x) = (zx_—e_x)

Funkce hyperbolicky tangens je také hojné vyuzivana a je Casto upiednostiiovana pied
sigmoidni pfenosovou funkei. A to proto, ze oproti sigmoidni funkci nabyva hyperbolicky
tangens hodnot mezi 1 a —1, ¢imz se neztraci hodnota zaporného Cisla a také je vysledna

hodnota blize nule, coz je lepsi pro ucici algoritmus.



Nevyhodu m4 ale stejnou, ¢im jsou vstupni ¢isla v absolutni hodnoté vétsi, tim je rozdil mezi
nimi mens$i. Neboli, pokud jsou vstupni Cisla pfili§ vysoka stane se rozdil mezi nimi
zanedbatelny, a to miize mit za nasledek, Ze by je neuronova sit’ nedokazala rozlisit (Ebert, 2019
str. 16). Jediny pfipad, kdy je davana piednost sigmoidni funkci je u vystupni vrstvy klasifikacni
neuronové sité, u které potiebujeme zjistit, jak moc si je sit’ jista, ze se jedna o danou tiidu.

Vystup tedy bude ¢islo mezi nulou a jednic¢kou, a to poté miizeme i sndze vyjadfit procentudlné.



4 JEDNOVRSTVA NEURONOVA SiT (PERCEPTRTON)

V této kapitole si ukdzeme zakladni jednovrstvou neuronovou sit' zvanou ,Perceptron® a
podrobné se podivame na jeji stavbu. Na zéklad¢ nabytych védomosti z pfedchozich kapitol si
na piikladu vysvétlime fungovani jednoduchého uciciho pravidla. Spolu s témito védomostmi
si ukdzeme fungovani Perceptronu na dvou piikladech s jiz redlnymi problémy. Také si
fekneme, pro¢ druhy ptiklad nelze jednovrstvou neuronovou siti vyfeSit a tim si zaroven

odpovime na otazku pro¢ viibec vznikly 1 sit€ vicevrstvé.

4.1 Definice

Abychom mohli zacit vytvaret vlastni neuronovou sit, musime si nejdiive predstavit neuron a
neuronovou sit, kterd obsahuje pouze jediny neuron. Ta nejjednodussi se nazyva Perceptron.
Perceptron je nejjednodusSim matematickym modelem neuronové sité, inspirovanym

skuteénym fungovanim neurontl v Zivém organismu.

Jednoduse feceno, funguje takovy Perceptron tak, Ze ma x vstupl a jeden vystup. Vstupy se
vynasobi zpocatku ndhodné vygenerovanymi vdhami a suma téchto Cisel plus prah (viz nize) je
poté porovnana s pozadovanym vysledkem. Tim dostaneme takzvanou chybu neuronové sit¢,
pomoci které se pozd¢ji budou optimalizovat vahy tak, aby byla ve vysledku chyba co nejmensi
(Farkas, 2019 str. 2). To tedy znamend, ze se jedna o ,,Supervised learning® neboli uceni

s ucitelem, kdy jsou siti predlozeny vstupni ale i vystupni trénovaci vzorky.

4.2 Stavba Perceptronu

4.2.1 Vstupy

Vstupy Perceptronu jsou podnéty z vnéjsiho prostfedi, charakterizovany libovolnym redlnym
¢islem. V nasem piipadé se jedna o vektor hodnot X, ktery obsahuje rtizné informace o
zkoumané véci. Vstupy mohou byt naptiklad i ¢iselné vyjadiené obrazky a pravé na tomto
principu funguje jakékoliv rozpoznani obliceje, zvifete nebo jiné véci. Vstup je vzdy vyjadien

libovolnou ¢iselnou fadou.



4.2.2 Vahy

Véhy jsou zpocatku ndhodné vygenerovana Cisla, ktery mi se poté ndsobi vstupy. Hodnoty vah
1 prahti jsou prave to, kde se projevi ucici proces. Jejich hodnota se méni na zéklad¢€ vypocitané

chyby sité. Na obrazku jsou vahy definované jako ohodnoceni hran.
4.2.3 Vystupy

Vystupy jsou vysledky neuronové sité, které se pocitaji sumou vstupli vynasobenych vahami.
Diky vystupu sité mizeme vypocitat takzvanou chybu sité, a to tak, ze od pozadovaného
vysledku odectu skute¢ny vystup sit€. Na zakladé této chyby je mozné pomoci doptedného

algoritmu postupné ménit hodnotu jednotlivych vah (Pircher, 2017 str. 15).
4.2.4 Prahy

Préh, nebo také Casto nazyvany ,,Bias“ je hodnota nachazejici se uvnitit samotného neuronu,
ktera se stara o posunuti celého optimaliza¢niho grafu. Zpocatku se jeho hodnota nastavuje na
hodnotu 1, na zéklad€ algoritmu doptfedného Sifeni chyby se optimalizuje (Pircher, 2017 str.

15).
4.2.5 Dopredné §ifeni signalu

Abychom mohli Perceptron viibec néco ucit, musime si nejdiive predstavit funkci, pomoci které

muze Perceptron urcit svlij vystup.

y=ZWixl-+b
i

Vidime, ze se jedna o pomérné jednoduchou rovnici. Abychom ziskali vystup Perceptronu
znaceny y musime vstupni hodnoty x vyndasobit jim ndleZici vahou w. Pokud ma Perceptron
vice nez jeden vstup, tak se hodnoty vstupti vyndsobenych vahami sectou. Provede se takzvany

vazeny soucet a poté se pouze pficte hodnota prahu daného neuronu b (Terhag, 2018 str. 18).



4.3 Delta pravidlo uceni

4.3.1 Vysvétleni

Toto pravidlo se pfevazné vyuziva pro uceni neuront s vyhradné linearni pfenosovou funkci.

Po tpravé se vSak d4 vyuZit i u neuront s nelinearni pienosovou funkei.
Pravidlo lze zapsat nasledovné:

Aw;, = €% 8; *x xy,

§; = y; — yi(out)

A co tyto dvé rovnice znamenaji?

X1

X2 i X J_ >y

X2 B

Obrazek 5: Perceptron

Podivejme se na obrazek jednoduchého neuronu. Vidime, Ze tento neuron maé tfi vstupni
hodnoty, které se znaci jako x; (protoze mame tii vstupy tak k = 1 az 3). Kazdy vstup ma
pfifazenou vahu wyy, kde i znaci dany neuron. Vystup neuronu je y;. Zbyva ndm ¢, pfiCemz se

jedné o takzvany ucici parametr, ktery urcuje rychlost uceni site.



Abychom mohli spocitat Aw;;, musime urcit chybu neuronu, kterou dostaneme odectenim
skute¢ného vystupu (y;(out)) od pozadovaného vystupu (y;) podle druhé rovnice, tim nam
vyjde §;. Poté dosadime do prvni rovnice. Nové vahy spocitame tak, ze ke stavajicim pticteme

nov¢ ziskané Aw;;, (Ploner, a dalsi, 2009 stranky 10,11).
4.3.2 Priklad

Abychom fungovani 1épe pochopili, podivejme se na konkrétni ptiklad.

Mame definované vstupy sit¢ (2 3 1) a chceme, aby vystup neuronu byl soucet vstupu tedy
6. Vahy neuronu jsou zpravidla ndhodné vygenerovany a jedna se vétSinou o ¢isla v intervalu

(-1 ; 1). V nasem piipadé zvolime vahy jako vektor (0.6 0.3 —0.2).

Nejprve provedeme vazeny soucet pro ziskani vystupu neuronu. Abychom si uleh¢ili praci,
miZeme vyuzit skalarni souCin vektorl, ktery se spocita jako a,by + a,b, +a,b, .
Vyjde ndm hodnota 1.9. Abychom dostali chybu funkce odefteme skutecny vystup od
pozadovaného vystupu tedy §; = 6 — 1.9. Chyba je tedy 4.1.

Za ucici parametr dosadime c¢islo 0,01 (pro¢ pouzijeme pravé tuto hodnotu, si vysvétlime az

v dalsi kapitole). Ted’ uz mame vse a staci nam pouze dosadit do prvni rovnice.
Awy, = (0.01x4.1)«(2 3 1)
Aw;, = (0.082 0.123 0.041)
Pro upraveni vah ptic¢teme nové ziskané Aw;;, a pricteme jej k aktudlnim vaham.
(new) wy, = (0.082 0.123 0.041) + (0.6 0.3 —0.2)
(new) wy, = (0.682 0.423 —0.159)

Abychom zjistili, zda je vypocet opravdu spravny, mizeme opét vypocitat chybu neuronu
s novymi vahami a porovnat ji s ptedchozi chybou (Ploner, a dalsi, 2009). Nova chyba by méla
byt mensi nez ptivodni. A opravdu, nova chyba 3,526 je skute¢né¢ mensi nez piivodni hodnota

4,1. A takto bychom mohli pokracovat, dokud by nebyla chyba minimalni.



4.4 Perceptron v praxi

Abychom si fungovani Perceptronu ukazali i v praxi a s problémy skute¢né¢ho svéta, vybral
jsem dva, na kterych vyse uvedeny algoritmus vyzkousime. Oba problémy jsem zkousel pomoci

webu https://neuronal-network.netlify.app/, ktery jsem vytvotil a jehoz zdrojovy kéd bude

k dispozici.

4.4.1 Ukazkal

Prvni problém bude linearniho charakteru. Ptijde o to, aby byly vstupni hodnoty secteny a poté
vynasobeny ¢islem dva. Protoze chceme konkrétni vystup neuronu bez nechténé upravy,
potiebujeme k tomu prenosovou funkci, kterd mtize nabyt jakychkoliv hodnot bez omezeni.

Proto vyuzijeme ptenosovou funkci ,,Identity* kde f(x) = x.

Jako vstupni hodnotu jsem zvolil vektor (1 3 4) tudiz vystup trénovaciho vzorku bude ¢islo

16. A jako nezndmy vstup jsem zvolil vektor (2 3  2). Idealné by tedy vysledek mél byt 14.

Ucici parametr je standartné nastaven na 0.01 (pro¢ tomu tak je si vysvétlime pozdéji) a pocet
opakovani jsem nastavil na 10 000. Vysledkem bylo ¢islo 11.27 a to znamena, Ze byla odchylka
vici skute¢nému vysledku 19.5 %. Na prvni pohled se tato hodnota mize jevit jako vysoka, ale
musime také brat v uvahu, Ze obvykle mivaji neuronové sit¢ ohromné mnozstvi vstupii a pocet
opakovani nékolik desitek milionti. Kviili tomu jsou také €asto trénované na superpocitacich,
které diky obrovskému vypocetnimu vykonu zvlddnou takovyto pocet opakovani za extrémné

kratkou dobu, na rozdil od klasickych pocitact ¢i notebooki.

Abych vam ale dokazal, ze Perceptron skutecné funguje a ,,nevyhazuje jen ndhodna disla,
pouzil jsem tfi trénovaci vzorky a zvolil 100 000 opakovani. Pouzita trénovaci data byly vstupni
vektory (1 3 4),(2 6 5),(0 7 3)a vystupni vektor (16 26 20). Tady byl jiz
vysledek 13.999... s odchylkou takika 0 % o poznani pfesn¢j$i. Vidime tedy Ze po pifidani
pouhych dvou trénovacich vzorkli a zvySeni po¢tu opakovani jsme dosédhli mnohem lepSich
vysledku. Plati tedy, Ze s naristem poctu vzorkd a poctem opakovani roste i presnost vysledku

perceptronu.


https://neuronal-network.netlify.app/

4.4.2 Ukazka 2

Jako druhy ptiklad jsem vybral zndmy problém ,,XOR®, ktery byl do jisté¢ miry ptic¢inou vzniku
vicevrstvych siti. XOR nebo ¢esky Exkluzivni disjunkce, je pravdiva pravé tehdy, pokud presné
jedna jeji ¢ast je pravdiva. Jinak je nepravdiva. Pro¢ stoji prave tento problém za vznikem

vicevrstvych siti jsme si jiz uvadeéli.

Tentokrat byly vstupy trénovacich vzorka vektory (0 0),(0 1),(1 0),(1 1) a vystupni
vzorky vektor (0 1 1 0).

Pocet opakovani jsem nastavil na 10 000 iteraci. Po dosazeni vektoru (1 1) vySel vysledek
0.66 oproti realnému vysledku 0, coz znamena, ze odchylka byla 66 %, a to je opravdu hodné.
Situace se nezménila ani s navySenim poc¢tu opakovani na 1 000 000. Po dosazeni toho samého
vektoru vysla znovu odchylka 66 % (Kvili ndhodnému zvoleni vah nebyla hodnota identicka,

ale lisila se jen o par tisicin, a to po zaokrouhleni vedlo ke stejnému vysledku).

Pro¢ tomu ale tak je? Abychom si mohli na tuto otdzku odpovédét, musime se nejprve pozornéji

podivat ne tento konkrétni problém. Podivejme se tedy na XOR (Exkluzivni disjunkce) v grafu.



Problém XOR

104 @ o

0.5

0.0 @ [ ]
0.0 0.5 1.0

Obrazek 6: Problém XOR (Exkluzivni disjunkce)
V grafu miZeme vidét dvé skupiny, zelené puntiky jsou vystupy, kdy XOR vySel 1 a naopak
cervené puntiky jsou ty, co vysly nula. Ted’ vam dam maly tkol. Zkuste se zamyslet a pokuste
se tyto dv¢ skupiny, tedy zelené a ¢ervené puntiky, od sebe odd¢lit primkou. Spravna odpovéd
je, ze ptimkou je rozd¢lit nelze, a to znamena, ze jsou linearné neseparovatelné. Vystup této
ukézky tedy je, ze jednoduchy perceptron nedokédze vytesit priklady nelinearniho charakteru.
Kdo by chtél jeste dalsi dikaz, ukazeme si tento problém jesté na soustavé rovnic. Z fungovani

umélého neuronu popsaného vyse, si 1ze odvodit nasledujici rovnice.
Ow; + 0w, =0
1w, + 0w, =1
Ow; +1w, =1

1W1 + 1W2 = 0



Ukolem je najit w; a w, takové, aby vyhovovaly viem étyfem rovnicim. Vyjde nam, Ze piiklad

nema reseni.



5 VICEVRSTVA NEURONOVA SIiT

V této kapitole si ukaZzeme vicevrstvé neuronové sité a popiseme si jejich stavbu. Rekneme si,

vvvvvv

»Back propagation* a na ptikladu si ukdZzeme jeho fungovani. Na zdvér, tentokrat Gispésné,

vyfesime druhy ptiklad z ptfedchozi kapitoly. Vyfesime tedy problém zvany ,,XOR".

5.1 Definice

Obrazek 7: Vicevrstvd neuronova sit’

S ptichodem Perceptronu roku 1958 nastal velky pokrok ve vyzkumu neuronovych siti. AvSak
kdyZz kolem roku 1989 Minsky a Papert pfisli na to, Zze Perceptron dokéze fesit jen linearné
spravovatelné problémy, muselo pfijit feSeni. Vicevrstva neuronova sit’ se sklada z libovolného
mnozstvi vrstev, které jsou tvofeny mnoha navzijem propojenymi neurony, popsané jiz

v pfedchozi kapitole. Jednotlivé vrstvy rozdélujeme na vstupni, skryté a vystupni.

V piipadé€, ze ma sit’ vice nez jednu skrytou vrstvu, jako na obrazku, nazyva se hluboka

neuronova sit’ (angl. Deep neuronal network).



Pravé takovato sit’ dokéze uspésné vytesit napiiklad problém XOR (Exkluzivni disjunkce)
s kterym pfisli Minsky a Papert. Celou sit’ si mizeme ptedstavit jako takovy filtr, kde kazda
vrstva hledd jiné vlastnosti (Pircher, 2017 stranky 17,18).

5.2 Dopredné Sifeni signalu vicevrstvé sité

Signal doptedného Sifeni u vicevrstvé sité je velice podobny tomu v jednovrstvé siti. AvSak
vypocitany vystup jednoho neuronu nemusi automaticky byt vystupem celé neuronové site, ale
muze slouzit i jako vstup do dalSiho neuronu. A to je také hlavni princip algoritmu doptedného
Sifeni vicevrstvé sité. Kdyz se podivame na obrazek vyse, zjistime, ze vystup jedné vrstvy slouzi

jako vstup vrstvy druhé, a takto to pokracuje az k vrstvé vystupni.

5.3 Algoritmus zpétného Sifeni chyby (angl. Back propagation)

5.3.1 Definice

Back propagation je algoritmus minimalizujici vyslednou chybu neuronové sité za pomoci
gradientniho sestupu, jedna se tedy opét o ,,Supervised learning* neboli uceni s ucitelem.
Gradientni sestup je algoritmus, pomoci kterého hleddme idedlné¢ globalni minimum nezndmé

funkce.

Ale co to znamena? Pojd’'me si to ukazat na nasledujicim ptikladu. Piedstavte si horolezce, ktery
stoji na vrcholku hory, a to uprostted snéhové boufte tak silné, Ze je sotva vidét na krok. Aby se
horolezec mohl dostat zpét domli do udoli, musi po malych kri¢cich nahmatavat okoli a
postupovat smérem vétsiho klesani. Velikost kroku horolezce je v ptipadé gradientniho sestupu
reprezentovan takzvanym ucicim parametrem (angl. Learning rate), ktery ma vzdy hodnotu

mezi nulou a jednickou.

Pokud by byl definovan nulou, znamenalo by to, Ze by se nas horolezec viibec nepohyboval a
nejspiS by na hofe umrzl. S neuronovou siti by to bylo stejné, hodnoty vah by byly s kazdou
iteraci stale stejné, coz znamena, ze by se sit’ nic neucila. To si mizeme i velice snadno
matematicky dokézat diky delta uc¢icimu pravidlu, popsanému jiz v piedchozi kapitole, z

kterého do jisté miry bude vychézet i tento algoritmus.



Jak jsme jiz popisovali, je vysledek chyby sité vynasobeny vstupy poté ucicim parametrem a
vysledna hodnota je pak pfictena k dosavadnim hodnotdm vah. Avsak kdyby byl parametr nula,
tak by se k hodnotdm pficetla pouze nula, coz znamena, ze by se hodnoty vah nezménily. Pokud
je ale naopak zvolen parametr moc velky, muize se stat, ze bude naS horolezec udoli
preskakovat, ale nikdy se do néj nedostane. Také proto je spravné zvoleni hodnoty tohoto

uciciho parametru velice diilezité.

Vyse jsem uvadél, Ze se snazime najit idealné globalni minimum funkce. Dostat se k tomuto
minimu je vSak velice nepravdépodobné a ani se s tim nepocita. Kdybychom si predstavili
nahodnou funkci v prostoru, zjistili bychom, Ze minimum je vice, avSak to nejvétsi je jen jedno,
a to se nazyva minimum globalni. Ostatni jsou minima lokalni (Pircher, 2017 str. 27). Ale co
se stane, kdyz uvizneme pravé v takovémto lokalnim minimu? Stane se to, Ze se nedostaneme
na nulovou chybu sité, ale to ndm vibec nevadi. Kdybychom méli nulovou chybu, znamenalo
by to, Ze funkce dokaZe vlozené vzorky identifikovat s pfesnosti sta procent. Ale jak by to bylo
s nezndmymi vzorky s podobnymi rysy? Ty by rozpoznany nebyly, protoze by sit’ méla nulovou
toleranci a identifikovala by jen data identicka s vlozenymi vzorky. To by vSak bylo pro nas

typ problému, u kterého se pocita s urcitou toleranci neefektivni.



5.3.2 Priklad

Obrazek 8: Vicevrstva neuronova sit (priklad)

Abychom mohli zadit pocitat konkrétni ptiklad, musime si nejprve definovat tvar neuronové
sit€. V nasem pfiipad¢ se jedna o tvar (2 2 2), to znamena tii vrstvy po dvou neuronech,

jedna vstupni, jedna skryté a jedna vystupni.

Nejprve si uréime tréninkové vzorky. Vstupni vektor (0.5 0.3) musi mit pravé dvé hodnoty,
protoze pocet neuront vstupni vrstvy je dva. To samé nastane také u vystupt, jelikoz ma
vystupni vrstva také dva neurony budou i dva vystupy t;,(0.1 0.3). Prahy mohou byt bud’to
pfimo uvnitf neuronu, nebo mohou fungovat jako dalsi vstup do kazdé vrstvy. To znamena, ze
se v kazdé vrstvé navysi pocet vstupii o jeden dalsi. Piesné tak, jak je prezentovano v obrazku

vyse.

Jako prenosovou funkci skryté vrstvy pouzijeme hyperbolicky tangens, popsany vyse.
Ptenosova funkce vystupni vrstvy bude funkce ,,Identity to znamena funkce f(x) = x. Vahy

mame, vyuzijeme totiZ ty z obrazku.



Kdyz uz méme vSechny pocate¢ni hodnoty, pustime se nejprve do doptedného Siteni signala

podle rovnice popsané jiz drive.
Dopiedné SiFeni skryté vrstvy
z_inp = (0.1-1) + (=0.1 - 0.5) + (—=0.1 - 0.3) = 0.02
z_in, = (0.2-1) + (0.3 - 0.5) + (0.4 - 0.3) = 0.47

z, = tanh(0.02) = 0.02

z, = tanh(0.47) 0.43

Pomoci téchto rovnic mame vypocitané vystupy skryté vrstvy, které ted’ pouzijeme jako vstupni

hodnoty vrstvy vystupni.
Dopredné Sireni vystupni vrstvy
y_iny = (0.0-1) + (=04 - 0.02) + (0.1- 0.43) = 0.035
y_in, = (0.3-1) + (0.6 - 0.02) + (0.2 - 0.43) = 0.226
y; = 0.035
y, = 0.226

Poté, co dostaneme vystupy celé neuronové sité, jsme schopni vypocitat jeji chybu tim, ze

vysledek odecteme od ndmi na zacatku definovaného vystupu.
Chyba neuronové sité
e; = 0.1 — 0.035 = 0.065
e; = 0.3 — 0.226 = 0.074
Vypocet hodnot delta neuronii vystupni vrstvy

Pomoci chyby miizeme vypocitat hodnotu § vystupnich neurond.



O =2 (tx — yi) @’ (y_ing)

A ted nam staci dosadit do rovnice. Také vime, Ze derivaci funkce f(x) = x je hodnota 1.

Muzeme ji taktéz rovnou dosadit a vyjdou nam dvé hodnoty.
6 =2-(t1—y) 9 (yiny) = 2¢; - 1 =0.13
62 == 2 . (tl - yz) (p,(y_inz) S 262 ' 1 S 0.14’8

Vypocet hodnot delta neuronii skryté vrstvy
8] = Z 81( ij (P’ ( Z_in]- )
k=1

Ano, tato rovnice mozna vypada troSku straSideln¢, ale jakmile si ji vysvétlime a vypocitame,

zjistime, Ze to tak hrozné neni. wjy jsou vahy mezi skrytou a vystupni vrstvou, 8y jsou hodnoty
delta vystupnich neurond, kter¢ jsme pocitali v minulém kroku a ¢” (z_in;) je derivaci

hyperbolického tangentu a to je 1 — (z)2.
8, = (0.13- (—0.4) + 0.148-0.6) ¢’(z_in,) = 0.0368- (1 — (0.02)?) = 0.03679

8, = (0.13-0.1 + 0.148-(=0.2)) ¢'(z_in,) = —0.0166- (1 — (0.43)?) = —0.01353



Aktualizace vah vystupni vrstvy

KdyZ uz mame témét vse spocitané, staci ndm provést aktualizaci vah podle vzorct, které jsme

si vysvétlovali jiz v pfedchozi kapitole.

Awj = € x 8 * zj

Tabulka 1

NEURON 1

NEURON 2

Awg; = € - 013 -1=0.13-¢

Awg, = € - 0.148 -1 =0.148 - ¢

Awy; = € - 0.13 - 0.02 = 0.0026 ¢

Awq, = € - 0.148 - 0.02 = 0.00296 - ¢

Awyy = £ - 013 -0.43 = 0.0559 - ¢

Aw,y, = £ - 0.148-0.43 = 0.06364 - ¢

Zaucici parametr € si dosadim 0.01 a podle rovnice

Tabulka 2

Wi = Wj + Awj aktualizujeme vahy.

NEURON 1

NEURON 2

Wp1 = 0013

Wgoo = 03 148

W11 == _0.39974’

wy, = 0.600296

W21 = 0.10559

wy, = —0.193636




Aktualizace vah skryté vrstvy

Ten samy postup pouzijeme i pro aktualizaci vah skryté vrstvy.

Avl-j=£*6j*xi

Tabulka 3

NEURON 1

NEURON 2

Avy, = € - 0.03679 -1 =0.03679-¢

Avy, = € - (—0.01353) -1 = —0.01335-¢

Avyy = € - 0.03679 - 0.5=0.0184"-¢

Avy, = € - (—0.01353) - 0.5 = —-0.006765" ¢

Av,, = € - 0.03679 - 0.3 =0.011"¢

Av,, = € - (—0.01353) 0.3 = —0.00406 - ¢

Za ucici parametr ¢ si op€t dosadim 0.01 a podle rovnice v;; = v;; + Av;; aktualizujeme

vahy.

Tabulka 4

NEURON 1

NEURON 2

1701 = 0103679

1702 == 018665

v, = —0.09816

v, = 0.2993235

le = _0.0989

vy, = 0.399594

A takto by vypadala jedna iterace této neuronové sit¢ (Dolezel, 2020). Abychom vSak dokézali,

ze se vyslednd chyba opravdu zmensuje, provedl jsem znovu vypocet doptedného Sifeni,

tentokrat vSak s aktualizovanymi vahami. Chyby e; a e, mi skute¢né vySly mensi.




A to jsem chtél dokazat. Chyba se opravdu zmenSila a kdybychom tento postup opakovali

vicekrat, chyba by se jeSté zmenSila.
e = 0.064
e, = 0.021

5.4 Vicevrstva neuronova sit’ v praxi

V piedchozi kapitole o perceptronu jsme si ukazali jeho funkci a zaroven jeho moznosti vyuZziti.
V druhém ptikladu jsme zjistili, ze je jeho vyuziti znaéné omezeno a ze si nedokaze poradit
s nelinearnim problémem XOR. Z tohoto divodu si tento ptfiklad zopakujeme a pouzijeme
pritom vicevrstvou sit’, jejiz fungovani jsme si vysvétlili vySe. Pro vypocet tohoto ptikladu jsem
pouzil programovaci jazy Python, jehoz vyhodou byla knihovna zvana ,Numpy*, kterd mi

pomohla s maticemi.

Abychom mohli pokracovat, musime si opét nejdiive definovat tvar sité. Pro zjednoduseni jsem
pouzil ten nejjednodussi mozny, to znamena jedna vstupni vrstva, jedna skrytd vrstva a vrstva

vystupni.

Jako vstupy trénovacich vzorkti jsem pouzil vektory (0 0),(0 1),(1 0),(1 1) a
vystupni vzorky vektor (0 1 1 0). V podstaté stejné trénovaci vzorky, jako v predchozi

kapitole. Jako pfenosovou funkci jsem zvolil hyperbolicky tangens. Pro¢, to si ukdzeme pozdéji.

Pocet opakovani byl tentokrat 10 000. Po dosazeni vektoru (0 1) mi vysledek vysel 0.999, to

znamena odchylka 0.1 %, coZ je velice blizko idealni hodnoté.

Nyni se podivame na graf, ktery nam ukaze, jak moc odchylka (angl. Loss) klesala v zavislosti

na poctu opakovani (angl. Epochs).
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Obrazek 9: Graf klesajici chyby (Tanh)

Muzeme vidét, Ze od 2 000 opakovani se odchylka takika nezménila a to znamend, Ze jsme
mohli teoreticky cely proces uceni zastavit u 2 000 opakovéni. Pro¢ jsem to neudélal ma ale
diivod, a to ten, ze bych Vam chtél ukézat rozdil ve zvoleni spravné pienosové funkce. Kdyz
se ted’ podivame na stejny graf jen s tim rozdilem, Ze byla pouzita pfenosova funkce sigmoid a
ne hyperbolicky tangens, zjistime, ze byl cely ucici proces znacn¢ pomalejsi a vysledek 0.905

byl také o poznani méné piesny.
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Obrazek 10: Graf klesajici chyby (Sigmoid)
Abychom si udélali pfedstavu, jak moc by bylo pouziti funkce sigmoid pomalejsi, provedl jsem
srovnani. Pro dosazeni stejné miry pfesnosti, v naSem piipade s odchylkou 0.01, pottebujeme
u sit¢ s pouzitou funkci sigmoid provést 10 074 opakovani, kdezto s funkci hyperbolicky

tangens pouze 527.

Vidime tedy, Ze zvoleni vhodné pienosové funkce se znacné odrazi na celkové efektivité celé

site.



6 ZAVER

Cilem této prace bylo vytvofit funkéni model neuronové sité a prezentovat jeji funkEnost na
piikladu. Tento cil jsem splnil a sité jsem vytvotil dvé. Jednu, na které jsem ukézal funk¢nost
jednovrstvé neuronové sité, zaroven jsem odhalil i jeji nedostatky. A sit’ druhou, kterd pravé
nedostatky jednovrstvé sit¢ dokazala vytesit. Jako ptiklad jsem pouzil problém XOR, ktery je
znamy tim, Ze ho nelze linedrné vytesit. Abych se ale viibec dostal k feSeni tohoto problému,
musel jsem nejprve vysvétlit fungovani umélé neuronové sité a vSechny nalezitosti k tomu
patfici. JelikoZ jsem nenaSel dost uziteCnych zdroji na téma umélych neuronovych siti
v &eském jazyce, musel jsem dohledat cizojazyéné zdroje. Slo piedeviim o odborné
vysokoskolské prace. A protoze velka ¢ast vyzkumii umélé inteligence probiha v Némecku, je
1 vétsina mych zdroji v némeckém jazyce. Spolu s matematickym fungovanim neuronové sité
jsem se zlehka podival 1 do jeji historie, kterd, jak jsem zjistil, je mnohem del$i, nez jsem
predpokladal. Dalsi, pro m¢ naro¢ny tkol, bylo neuronovou sit’ naprogramovat a na ptikladu

také otestovat.

Dle mého nazoru jsem vytyCené cile mé prace splnil, avSak musim pfiznat, Ze celkova naro¢nost
tohoto tématu byla nad mé ocekavani. I presto si ale myslim, Ze jsem do tématu do jisté miry
pronikl a byl bych schopen s nim nadéle pracovat. Nejvétsi prekazkou bylo pro mne pochopit
algoritmus zpétného Sifeni chyby, kde byla pouzita vyssi matematika, mné predtim neznama.

Nakonec jsem to vSak zvladl a mohl jsem dopsat 1 tuto kapitolu mé prace.

Rekl bych, e pro mé byla tato prace piinosem a jisté jim bude i pro kazdého, kdo si ji preéte.
Jedna se o velice aktudlni téma s velkym potenciondlem, je tedy pfinosné se mu podrobnéji

vénovat.
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9 PRILOHY

Soucasti této prace bylo také vytvoreni programu. Oba programy najdete na ptilozeném usb

flash disku, v ptipad¢ elektronické verze této prace, ve slozce programy.
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